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Employing the *“‘statistical thermodynamic formalism” developed in an earlier paper,
it is possible to determine “compact™ sets of transmission times for the words of PCM
(pulse code modulation) messages. In particular, we deal with pulses of zero or unit
heights. These compact signals, which lead to shorter message times and eliminate
redundancy even when successive words are correlated (Markov source), may, however,
require additional bandwidth, We examine two simple cases where autocorrelation
functions, and therefore power spectra, can be evaluated. In one case, that of the
Markov source, it proves possible to accomplish both shorter transmission time and
narrower bandwidth (half-width of the power spectrum), showing that optimization
of transmission times can be very worthwhile. Techniques for deriving autocorrelation
functions are discussed at length.
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mechanics; power spectrum.

1. INTRODUCTION

In a recent paper,® the authors developed a connection between the methods of
statistical thermodynamics (especially the methodology associated with the many-
body problem) and certain problems of coding, in information theory. In that paper,
a particularly simple concrete example was treated, representing a case of puise code
modulation (PCM). It may be described as follows. A continuous signal is sampled,®
say at time intervals of 1/2w, where w is the bandwidth, and the samples are converted
into binary numbers for transmission by pulse code modulation (PCM)'® over a
noisy channel. In order to combat noise, check digits'¥ may be added to each binary
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code word; and to gain a measure of compactness in advance of binary coding, some
procedure, such as Huffman® or Fano‘® coding, may be employed. As a final
generalization, the same procedure may be used for the transmission of discrete, as
well as continuous, messages. For example, the binary numbers, instead of representing
samples of a continuous message, may correspond to the letters of the alphabet which
appear in the sequence of some text being transmitted. In any event, the pulses are
reconstituted into the original signal at the receiver end of the system.

The transmitted message then consists of a sequence of zeros and ones. This
sequence will have a set of statistics generated by the constraints in the original
message, those implicit in Huffman or Fano coding, and in the method of
assigning check digits. The chance that a given digit will be zero or one depends, in
some way, on the preceding digits. This correlation amounts to a redundancy which
can still be squeezed out of the message to be transmitted. Even in the absence of
correlation, there may be redundancy implicit in unequal frequencies of appearance
of zeros and ones. We assume that the statistics of the message can be determined by
a suitable investigation.

Usvaully in PCM the pulses representing zeros and ones are of equal duration.
By assigning different transmission times to different pulses, depending upon the
statistics, it is possible to increase the rate of transmission. Of course, this is possible
by merely shortening the duration of each pulse in scale; but for this, one pays the
price of greater bandwidth. An important question, however, is the following. Can
one, by choosing pulse transmission times of various magnitudes, decrease mean
transmission time without simultaneously increasing bandwidth ?

In the present paper, we concentrate on examining certain aspects of this question.
We are not able to show that this is generally possible, but have worked out two
nontrivial cases in which the above-mentioned goals can and cannot be achieved,
respectively. Assuming that we are presented with a set of source probabilities, we
make use of the statistical thermodynamics formalism outlined in Ref. 1 in order to
choose pulse transmission times which match the code to the source and make it
compact.? In order to examine the bandwidth question, we evaluate the autocor-
relation functions” of the transmitted signals (as they depend on message statistics
and assigned pulse transmission times), and, then, in accordance with the requirements
of Wiener theory,® we derive the exact power spectrum® by Fourier transformation.
With the power spectrum in hand, it is possible to estimate bandwidth. In each

2 The term “compact” in the present case should really be replaced by “compact relative to scale.”
For example, suppose we are confronted with a source having unequal probabilities of word
emission. Intuitively, one would expect the least probable (least frequent) word to be assigned the
largest transmission time. There may be an additional requirement that this longest time be no
shorter than a certain minimum. Then, subject to this requirement, the code can be made “compact™
(made to have the shortest mean transmission time per word); the scale being fixed by the require-
ment of fixed Jargest transmission time. A practical example in which such a requirement exists is
illustrated by the case when bandwidth is limited by a certain maximum. Since short transmission
times are almost certain to be accompanied by large bandwidth, the above-mentioned “maximum”
in bandwidth will force the scale of transmission times to be larger, and, in particular, will set a
lower limit on the largest transmission time for a compact or optimized code.
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instance, the bandwidth is determined for the case in which all pulses are of the same
length regardless of the statistics, and for the case in which transmission times have
been optimized by the above-mentioned matching procedure. Comparisons are then
made to see if narrowing is possible while yet achieving minimum transmission time.
In this way, the application of the statistical thermodynamic formalism to the
investigation of this possibility and, when it is possible, to the selection of otpimized
transmission times, is illustrated.
In the low, white Gaussian noise case, the noisy channel coding theorem®®

I = oTlog[l + (P/N)] Y

(where I is the maximum amount of information in bits which can be transmitted in
time 7" through a channel of bandwidth w, having average signal and noise powers P
and N, respectively) places little or no restriction on the product w7. Therefore, the
possibility of maintaining 7 fixed while reducing both w and T is very real. Stated
another way, for the case of low noise one will in most cases be operating below
channel capacity.

2. THE WIENER-KHINCHINE THEOREM

The Wiener—Khinchine theorem® states that the autocorrelation function ¢(7)
and the power spectrum G(w) are a Fourier transform pair:

Glw) = [ eong(r) dr )

o

40 = 12m) [ Gl e do ®

in which w is the angular frequency and r is the quantity defined in connection with
Eq. (4). For signals generated by complex mechanisms (for example, sources using
English grammar) in which repeated experiments performed under similar conditions
produce results having the same statistical properties, the correlation function may
be written as an ensemble average,

¢(7) = Ji:) dy, J.io Ays Y1 Y2P(V15 Va5 7) S

where y, and y, are amplitudes of the signal taken at times an interval = apart,
and p(y, , ys , 7) is the joint probability density function for the process. The double
integration represents the ensemble average. Thus,

(1) = {y1YeP(¥1, V2 s Tk (5)

In the cases which we study, only ones and zeros will be transmitted, and Eq. (5)
simplifies to

¢(T) = <p(13 15 T)>E (6)
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3. MEMORYLESS SOURCE WITH UNEQUAL EMISSION
PROBABILITIES

Assume that the PCM signal consists of ones and zeros whose appearances in the
messages are completely uncorrelated, i.e., the probability of emission of a one or
zero is completely independent of whether the symbol emitted previously was one or
zero. However, we assume that in the overall message, ones and zeros appear with
unequal frequencies. For example, the fractions or probabilities of ones and zeros
could be

Py = 0.618, P, = 0.382 @)

respectively. These unequal probabilities represent information redunancy because
the maximum information in a message composed of a fixed number of digits is
transmitted when p; and p, are equal. It is therefore possible to adjust the relative
transmission times for ones and zeros so as to minimize the overall transmission time
of the message, except for a scale factor. Suppose, however, we ignore this optim-
ization step and arbitrarily assign the following transmission times:

Lh=th=c0o ()

A portion of a typical message might then look like Fig. 1. In order to evaluate the
autocorrelation function, we proceed as follows. Let

T=No+ ¢ 9)

where € < o and N is an integer. When N = 0 or 7 = € < o, there are two types of
situations. There are illustrated in Fig. 2. In Fig. 2(a), the end points of = are both
within the same unit pulse, while in Fig. 2(b), they lie in different pulses. As + — 0, the
probability of the configuration in Fig. 2(a) will exceed that in Fig. 2(b), while as
7 — o, that in Fig. 2(b) will become the more probable. In fact, it is easy to see that

probability of = entirely within a unit ¢ is 1 — (7/0)

(10)

probability of = having ends in two different units of ¢ is 7/¢

In order for  to contribute to the right side of Eq. (6), both ends must fall in regions
occupied by ones. Therefore, for 7 < o,

$o(r) = (P(L, 1, )> = (7/0) P,* + [1 — (7/0)]P, (1)

ok

time ——¥

Fig. 1. Typical message for a zeroth-order Markovian source ¢, = #, = o.
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Fig. 2. Possible configurations for 7 = ¢ < o.

in which P, is the a priori probability for the occurrence of a one. As we might expect,
when 7 — 0,

bo() — Py (12)
and for r — o,
‘150(7') -~ P2 (13)
When 7 > o, 0r N = 1, 2, 3,..., it Is clear that
Pulr) = Py? (14)

since the probability that the ends of the interval = fall in unit pulses is simply the
product of the independent chances such that unit pulses exist. Thus, the auto-
correlation function for messages from this source has the form iltustrated in Fig. 3.

¢(1)

[0

Fig. 3. Autocorrelation function for a zeroth-order Markovian source, P, = 0.618, P, = 0.382
t; =ty = lo.
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Since ¢(+) must be an even function of 7, the power spectrum described by Eq. (2)
can be expressed in the form

G = [ ewngdr = | ‘iw e d(r) dr + | ;O eion(r) dr

—0

= [ erg(omyd—n) + [ e dr) dr
- | : eor(r) dr -+ | : -1t (z) dr

= 2 Re f et d(r) dr (15)
4]
Because ¢(7) has different forms for = greater and less than o, Eq. (15) exhibits two
terms

G(w) = 2Re || 0 folr) eiom dr + | °° da(r) i di ) (16)

In this equation, ¢(7) and Pn(r) come, respectively, from Egs. (11) and (14). Upon
carrying out the indicated integrations, we obtain®

Gw) = [2P,P(1 — cos wo)/w?c?lec + 27P2 &(w) amn

the desired form for the power spectrum, and in which 8 is the Dirac delta function,
equal to infinity for w = 0 and zero otherwise.

Figure 4 is a plot of G(w). Several points deserve comment: (1) The half-width
is independent of P; and P, , although the value of G(w), at half-width, is dependent
on these quantities. (2) As o becomes smaller, the half-width increases; the power
spectrum is broadened. This expected result is evident in the fact that G(w) depends
on the product wo rather than on w alone.

Having obtained the power spectrum for the case in which transmission times for
ones and zeros are identical, we next optimize these times, matching them to the source
probabilities specified by Eq. (7). We define £, and ¢, as the transmission times going
with zero and one, respectively. Since the source is without memory and we wish the
code to be maximally compact, the appropriate relation between source probabilities
and word transmission times is Eq. (37) of Ref. 1, with g of that equation set equal to
unity in accordance with Eq. (42) of the same reference. Thus, we may write

ty = —k7yIn Py, ty = —kTy In Py (18)

in which «, the pseudo-Boltzmann constant, is log, e and 7, is the information theory
temperature, the star being appended in order to distinguish it from the quantity =
used in the previous equations of this paper. Substitution of the p values as specified

3 Note 8(w) = 08(wo),V
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0y ———a—

Fig. 4. Power spectrum for a zeroth-order Markovian source, P, = 0.618, P, = 0.382, ¢, = £, = lo.

by Eq. (7) into Eq. (18) indicates that the optimum # is just half the optimum 7,
so that we may write

o[t

tp= o0 1%

tlz

where o is again the unit pulse length and determines the scale. As emphasized in
Ref. 1, when we deal with continuous rather than block coding, compact message
times are not determined absolutely but only to within a scale factor.

With this choice of transmission times, the portion of a typical message exhibited
in Fig. 1 now looks like Fig. 5. Even so simple a change as that contained in the
prescription given by Eq. (19) makes the determination of the autocorrelation function
considerably more difficult. In fact, our choice of source probabilities has allowed

o o

l_— ko

Lime sem———————

Fig. 5. Typical message of a zeroth-order Markovian source after optimization
of transmission times.
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the optimum transmission times to be integral multiples of a common unit, and it
was for this reason that the specific choice in Eq. (7) was deliberately made. At the
moment, it appears as though the analytical evaluations of autocorrelation functions,
when transmission times are not related in an integral manner, would present almost
insuperable difficulties. Nevertheless, if the problem is studied for source probabilities
demanding a variety of integral relationships, some insight into the behavior expected
under nonintegral conditions might be obtained by interpolation, although care must
be taken to ensure that singular situations do not arise.

Once again we make use of Eq. (9). Since, in order for an interval = to contribute
to the right-hand side of Eq. (6), both of its ends must fall within pulses representing
ones, and, in this as it was in the previous case, the transmission time for a one is o,
we have, for N = 0, a result similar to Eq. (11), which we now write as

$o(7) = (7/)PET + [1 — (r/0)] P{¥ (20)

Instead of P, we have used P{®. This quantity may be called the space probability of a
one as opposed to P, itself, which is the #ime probability of a one. In fact, the relation
between P and P; is illustrated by the following equation

P = PyJ(Py + 2Py) 1)

From this it can be seen that P{® is essentially the fraction of the space of the
message covered by pulses representing ones. The coefficient of the second term on
the right in Eq. (20) is the probability that the interval = falls entirely within a unit
pulse of length o. As we have indicated earlier, in order for it to contribute to the
ensemble average leading to the autocorrelation function, it must also fall within a
spatial interval occupied by a one. Since the coefficient already takes care of the
probability of + falling entirely within a pulse of length o, we need only multiply it
by the chance that one end of = falls within the space of a one. Clearly, this proba-
bility is given by Eq. (21), since the right-hand side represents the fraction of message
space occupied by ones. Since the first term on the right of Eq. (20) refers to situations
in which the ends of = fall in regions occupied by two different ones, and the source
has no memory, so that ones are emitted with independent probabilities, it is [P{"]?
which appears, multiplied by the coefficient +/o which gives the chance that = does
not fall entirely within a unit o. For N > 1, the expression for the autocorrelation
function is similar to that given by Eq. (20) except that each term in that equation
must be modified by a factor which accounts for the fact that several different mes-
sages may be fitted into the interval between the ones in which the ends of the interval
7(now long enough to span many units of o) fall. More precisely, these factors
represents the probabilities of complete messages being fitted into the above-mentioned
intervals. They are represented by the quantities P(N) and P(N — 1) in the following
equation, which represents the autocorrelation function for the case N > 1:

$n(r) = (/)P P(N) 4 [1 — (e/0)][PP12 P(N — 1) 2)

A little thought will show that /o is the chance that = cover N whole units of o,
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not including the two fractional units terminated by the end points of . As before,
[P{] is the probability that both end points are ones. P(N) is the probability, or
normalized weight factor, that a complete message can be fitted into the interval of
length No. This quantity was not required for the noncompact case with ¢, = ¢, = o,
since there it was always possible to fit some message, ones and zeros occupying the
the same space interval. Thus, (¢/o)[P{¥]2 P(N) gives the contribution to the auto-
correlation function for cases where 7 ‘““covers” N whole units. In contrast,
[1 — (¢/o)][P{'? P(N — 1) accounts for configurations such as that exhibited in
Fig. 6(a), in which one less unit is “covered.”
The function P(N) is evaluated in Appendix A. The result is

P(N) = [(Py — DVt — 1]/(P, — 2) (23)
since

€ = 7 — No 24)

Substitution of Egs. (23) and (24) into (22) yields

T W (s)y2
by = PP (o = DY T~ ey — Y 4 BT BT o)
where N =1, 2, 3,... . From Eq. (15), we find
G(w) = 2Re | ® emiord(r) dr
o 0 (N-+1)o
=2Re[[ g erdrt 3 [ ate) et ] (26)

in which ¢(7) and ¢x(7) are given by Egs. (20) and (25), respectively. The first term
on the right of Eq. (26) can be treated as before, but the second term must be integrated
between No and (N -+ 1)o, and the integrated results summed over N as a geometric

b 1=No+e —

b T

[

sy
:

time ——————

Fig. 6. Two configurations that contribute to the autocorrelation function.
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[es

Fig. 7. Power spectrum for a zeroth-order Markovian source after optimization
of transmission times, P, = 0.618, P, = 0.382, 1, = 1o, t, = 20.

series to obtain the final result in closed form. This procedure, which is straight-
forward but somewhat lengthy, leads to the following expression:

2(1 — PY[PYY [cos wo — cos 2wo — (P, — 1)(1 — cos wo) ]

Gw) = P, — 2(P, — 1) cos wo

wic

2[PPT(P, — Dsinwo | 2[PPT [sinwo
- P, — 2w TP 2 [ ”8(“’)]

2[PYTE sin wo
w

2PP(1 — P a

w?c

— €08 wo) + 27

+

Figure 7 shows a plot of G(w) as a function of wo. The half-width now occurs at
wé = 2.11, compared with the previous value of we = 2.78, and the bandwidth has
been narrowed by a factor fo 1.32 by the optimization of transmission times. However,
with o unaltered, the average transmission time

(Y = (Py + 2P0 = 1.382¢ (28)
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is increased by a factor of 1.382. If we wish to do no more than eliminate this increase,
to say nothing of reducing <{¢> to a value less than o so that a reduction in trans-
mission time is achieved by optimization, o will have to be reduced by a factor of
1/1.382. This means that the width of the power spectrum, at half-width, will have to be

w = 2.11/(c/1.382) = 2.92/c (29)
compared with
w = 2.78/c (30)

for the previous case in which transmission times were not optimized. Thus, in the
present case it is not possible to reduce bandwidth and message time simultaneously.
If one wishes to reduce message time by reducing o by a factor larger than the 1/1.382
which demands the bandwidth shown in Eq. (29) (and which already exceeds that of
the nonoptimized case), the bandwidth will have to exceed the value given in Eq. (3
by an even larger amount. In such a case, no advantage will be gained through use of
a compact code unless bandwidth is not a critical consideration.

In the next section, we study the optimization and bandwidth problem for a
source having memory; to be exact, a first-order Markovian source in which memory
extends only to the previously emitted word. Here, we shall discover that it is possible
to reduce both message time and bandwidth simultaneously so that even when
bandwidth is a consideration, transmission time optimization still represents an
advantage.

4. A FIRST-ORDER MARKOVIAN SOURCE

The application of the statistical thermodynamic formalism to the optimization
of a first-order Markovian source emitting ones and zeros was discussed in Section 7
of Ref. 1. In that section, it was shown that the relation between ¢, , the optimum
transmission time for the jth word emitted by the source after the ith word (both i
and j can be zero or one) and P,; , the probability that the ith and jth words are emitted
in sequence [probability of the digraph (i}] is given by

Py = (Syu/N@N8Sy)s,.,. » i"#FiQ, j AT (31
where
Si' —_ e—t“/KT. (32)
and A is the maximum eigenvalue of a secular equation originating from the application
of the matrix method to the evaluation of partition functions. With the evaluation of
this eigenvalue and substitution in Eq. (31), it can be shown that
Py = %Sn{l + [(Su - Soo)/ Cl,
Pyy = % 00{1 + [(Soo — Su)/C]}» (33)
Py = Py = 8150/C
where
C=[(Sy— 00)2 + 4S10S01]1/ 2 (34)
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Equations (33) and (34) can be inverted to yield

Sn - 2Pu/(1 - Poo + P11)a Soo = 2P00/(1 — Py -+ Poo)

(3%)
S10S01 = (1 - P11 - Poo)g/(l - P11 + Poo)(l -+ Pu - Poo)

Equations (31)-(35) constitute the recipe for optimizing transmission times if the
message statistics are known, or vice versa. We use them in the present section.

We now introduce the conditional probability p,; , which represents the chance
that the jth word will be emitted given that the ith word was emitted previously.
This is not to be confused with the digraph probability P;; introduced earlier. If the
a priori probabilities for emission of a one or zero are P; and P, respectively, then
the relations between the conditional and digraph probabilities are

Pipyy = Py, Pipy = Py, Popoy = Py, Pypyy = Py (36)
and
Py = (1 — pp)/(2 — Poo — P11)s Py = (1 — pr)/2 — Poo — P11) (37

Some additional useful relations follow:

Py + Py =1 (38)
Do + Por = 1, Putpo=1 (39)
P+ Py = Py, Py 4 Py = Py, Py = Py (40)

Pu = 2Py/(1 — Py + Pyy), Poo = 2Pgo/(1 — Py + Pyy) @1
P1o:(I‘Poo_Pu)/(l—P00+P11)a P01:(I_Poo_Pu)/(l_Pu‘l“Poo)

From these equations, it is clear that once py, and p;; are given, the message statistics
are unambiguously defined.

As in the previous example dealing with a memoryless source, we calculate the
autocorrelation function in terms of the conditional probabilities for both the non-
compact and compact cases, respectively. To simplify our discussion without losing
the point, we deal with a source with the following conditional probabilities:

Do = p1g = 6.18, Pu = Poo = 3.82 42)

We begin with the noncompact case, and instead of optimizing transmission times we
choose

Iy = fig = lyy = fgp = 0 43)
where, as indicated earlier, #;; is the transmission time for the jth word following the

ith word. As in Eq. (9), we write + = No + e. For N = 0, we define ¢ as ¢, , and it
follows that

$o(7) = [1 — (7/0)] Py + (7/0) Pypu (44)

Again, the factors 1 — (/o) and 7/c are the respective probabilities that the interval
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7 falls entirely within a unit o, or bridges two units. The unit within which 7 falls or
the units bridged must be the loci of ones in order that a contribution to ¢(r) be made,
i.e., the ends of = must fall in ones. Thus, in Eq. (44), the factors mentioned must be
multiplied by the probabilities that ones are in the called-for locations. In the first case,
since we deal with a single one, within which 7 lies, the appropriate factor is the
a priori probability P; for the occurrence of a one, while in the case that = bridges
two ones, we require the digraph probability P,p;, . These mutually exclusive
probabilities are added to give ¢, in Eq. (44).
For N =1,

(ﬁN(T) = (/o) PN + 1) Py + [1 — (¢/0)] P{(N) P, (45)

The origin of this equation is similar to that of Eq. (22) with, however, some modi-
fications. The factors €/ and 1 — (/o) are the probabilities that 7 spans N or N — 1
whole units of o (including the units within which the ends lie; this would be N - 2
or N + 1 units, respectively). P,(¥N) is the probability that a message of exactly N
units has its first unit following a one, while its /ast unit is a one. Thus, consider the
the second term on the right of Eq. (45). The first factor gives assurance that = spans
N — 1 whole units as described previously. The last factor measures the probability
that the unit within which 7 begins is a one; while the middle factor is a conditional
probability, given the first unit is a one, that the following message of N units ends
with a one so that this 7 makes a nonzero contribution to ¢. The first term in Eq. (45)
is constructed in a similar fashion, and deals with the mutually exclusive situation
in which 7 spans N whole units (N + 2 units if those within which the ends lie are
included). The quantity P,(N) is evaluated in Appendix B, and may be expressed as

Py(N) = [(pu — D/(pa + Poo — X1 + Poo — DY + [(Poo — D/(P11 + Poo — 2)]

(46)

The reader may satisfy himself concerning the validity of Eq. (46) by examining certain

special cases where the answer is easily arrived at by inspection. Useful points at

which to make such a check are 1 = 0, 7 = 0, r = oN with € = o, 7 = (N + 1)o

with e = 0. It also turns out that as N — 0, Eq. (45) reduces automatically to Eq. (44).
Upon substitution of Eq. (46) and €« = 7 — No into Eq. (45), one obtains

Pi(1 — py) Py(1 — py)
== - 1 N
o) 2 —pu —Pw g 2 — pu — Poo (Puz + Poo )

+ N(1 — p11) Pi(pus + poo — DY
— TP —p)(pu+ P — DY, N=012.,00 (47

The power spectrum G(w) may be written as
G(w) = 2Re [ e od(r) dr
’ (48)
(N+1)o

— 2Re 2 [ o r

No
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As before, the integration may be carried out, the geometric series summed, and the
final result expressed as

— 2P,(1 — p1)(P1y + Poo)(l — cos wo) 1
6 = [T =2 = = 1) 05 00 - (o F o = TF whF| 7 27
Py(1 — poy)
o P — 49
2 = pi1 — Poo “49)

This curve is illustrated in Fig. 8. It is an interesting feature that the factor

(Poo + P — 1)

can be negative, because p,, and p,, can lic anywhere between zero and one indepen-
dently. Under this circumstance, it is entirely within the realm of possibility that it
may lie very close to —1, say it is —1 - s, where % is a small positive number. Then

[T~ 2(poo + P11 — 1) cos wo + (pgy + p1z — 1)7]
=1—2(—14 A)cos wo + (1 — 2h)
= 2(1 — A -+ cos wo) (50)

Thus, as cos we — —1, the denominator in Eq. (49) becomes small enough to,
dominate the 1/w?c? term and G(w) becomes very large. As a result, we do not have a

simple bell-shaped curve in Fig. 8.
The case where (L, + p;1 — 1) — 1 — his not as serious, because the numerator

in Eq. (49) contains a factor 1 — cos wo which also becomes small, i.e.,
[1 — 2(poo + pru — 1) cos wo + (poo + py — 1)*] = 2(1 + A)(1 — cos wo) (51
Glw) = [Py(I — p1)(pux + Poo)/(1 + B))(1/w?c?) (52)

The lesson to be learned is of course that G(w) is not a simple curve, under the
circumstances in which are interested. Hence, when making comparisons between
power spectra, the half-width provides only a semiquantitiative indication of relative
bandwidth. This is especially true when one of the two curves being compared is

bell-shaped and the other is not.
As we let py, — Py and p,; — P;, so that the source no longer has memory,

Eq. (49) reduces to
G(w) = [2P;(1 — P))(1 — cos wo)/w?c?]c + 2md(w) Py? (53)

which is identical with Eq. (17), as it should be.

Now, we examine the case in which transmission times are optimized. Analyzing
Eqs. (31)-(35), together with (36) and (37), we find that the z,; going with the p;;
prescribed by Eq. (42) are

In = thy = o, foo = I = 20 (54)
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e e
olE

(2] =)

wo

Fig. 8. Power spectrum for a first-order Markovian source,
Ps1 = poo = 0.382, ty; = tyo = F1o = Ipy = lo.

We begin by examining a portion of what might be a typical message having the
transmission times prescribed in Eq. (54). This is illustrated in Fig. 9. The alert reader
may have already determined, by inspection, that if a segment of a message exactly M
units of o long follows a unit occupied by all or part of a one, and if M is odd, that
message can only end with a zero; while if M is even, it must end with a one. This and
many other constraints interact to render the evaluation of the autocorrelation
function both detailed and tedious. Nevertheless, it can be evaluated precisely.
Perhaps the best way to explain the process is to concentrate on a unified group of
terms in ¢(7), show how, in this particular case, the constraints interact and the
result is formulated, and then merely write down the final result for the complete
&(7). The reader should then be able, using exactly the same process, to evaluate the
remaining terms which have not been explained in detail.

Following this plan, we will derive, in some detail, the contributions to ¢(r),
going with those values of = expressible as 7 = No - ¢, or values of = bounded in
the following way:

No <7< (N Do (55)
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which of course implies € << 0. A little though will show that a = of this magnitude
can span either N whole units of o or alternatively only N — 1 whole units. This
means that in the first case, = contacts N 4 2 units; the N whole units which it spans
plus the two units on either side of these N units within which its end points lie,
neither of which is completely spanned by 7. In the second case, by the same line
of reasoning, = will contact N + 1 units, the two end units again being incompletely
spanned. In order to arrive at the respective probabilities for each case, one can think
of “throwing down” a straight line of length = onto a typical message. In what
fraction of the total space of the message can one of the end points (which of course
determines the location of the entire = interval) fall so that N complete units will
be spanned ? Again, inspection will show this fraction to be

v =€/ (56)
For the second case (7 spanning N — 1 complete units), the appropriate fraction is
Sy =1— (/o) (57

These factors will have to appear in the probabilities which are used to determine the
contribution to the ensemble average, for ¢(7), coming from the interval 7. Reference
to Fig. 10 will be helpful in understanding the process.

Figure 10(a) treats the case where 7 covers N complete units. The probability
factor fy , described by Eq. (56), must therefore be used, and is in fact shown at the
bottom of the diagram in Fig. 10(a). We work out a case where N is odd. There are
only three possible message situations for this case, and these are exhibited on different
levels in Fig. 10(a). The unit o is shown in the upper left-hand corner. Notice that
in each of the three cases, the first visible portion of the message sequence (on the
left) is all or part of a one. Thus, on the first level, it entirely precedes the N units
under consideration. It remains an open question as to whether it is the last part of a

1 T T AT IT,

47 F

+ime———————

Fig. 9. Typical message for a first-order Markovian source after optimization of
transmission times, #y = #5; = lo, 1y = e = 20.
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Fig. 10. Terms in autocorrelation function.

pulse, 20 in length (a one following a one), or all of a pulse, o in length (a one following
a zero). The probability P{¥ represents the space probability, as opposed to the time
probability. We work out below the exact form for Pj”. Here, however, we note
that the symbol P{ has a different meaning than that given previously during the
discussion of a source without memory. No confusion should result from this, and
it avoids the introduction of an even longer list of symbols than we already have.

On the second level in Fig. 10(a), the one at the left is in fact a pulse 2¢ units
long, and it invades, to the extent of one o unit, the No units under consideration.
The space probability for the second half of such a pulse covering the first of the N
units is denoted by P{’. We also derive this quantity below. On the third level, the
first unit on the left is, again, either the second half of a pulse two units long or a
single pulse one unit long, and again we use the probability P{*.

Returning to the first level, since N is odd, the intermediate message N units
long (which follows a one) can only end (from what has been said above) in a zero.
The probability of finding just such a message to fill the N units in question is Py(N), a
function derived in Appendix C. Actually, because we know that the last symbol
must be a zero when N is odd, it is really unnecessary to append the subscript zero
in Py(N); and in Appendix C we do in fact drop it. For clarity in the present exposition,
however, we shall retain it as well as the subscript 1 when the last symbol must be
a one. On the first level, we show a 0 in the last place to emphasize the fact that the
message N units long must end in a zero.

On the second level in Fig. 10(a), it can be seen that we deal with an intermediate
message exactly N — 1 units long. In this case, it must end in a one, and we have to

822/3/3-3
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use the probability P,(N — 1). The same is true on the third level, where again we deal
with an intermediate message N — 1 units long.

Since the final symbol within which the trailing end of 7 falls must also be a one
in order for there to be a contribution to the autocorrelation function, we must
multiply the previously mentioned probabilities by the probability, in each case,
that the final symbol is indeed a one. On the first level, since we know that the last
symbol in the intermediate message is a zero, this probability is the conditional
probability py, . The appropriate pulse is shown. On the second and third levels, the
appropriate conditional probability is clearly py, , and it, together with its associated
pulse, is shown.

Each configuration contributes a term, unity, to the autocorrelation function,
each unity weighted by the probability of the configuration. The latter probability
is determined, clearly, by multiplying fy = €/o by the three probabilities shown on
each level. Thus, the first level in Fig. 10(a) makes a contribution (¢/0) P{® Py(N) py, -
The second level contributes (¢/0) P Py(N — 1) py; , while the third level contributes
(/o) PPN — D) pyy -

The contribution coming from 7 includes the situations shown in Fig. 10(b).
Here, of course, N — 1 is even; and furthermore, the f probability factor is 1 — (¢/o),
as indicated at the bottom of the diagram. The reader can easily work out the con-
tributions from Fig. 10(b) in a manner entirely similar to that used in connection with
Fig. 10(a).

In order to see that no other configurations can contribute to either Fig. 10(a) or
10(b), the reader should try those which he may have in mind, applying all the requisite
constraints. Thus, suppose one wished to have a situation such as in the first level
of Fig. 10(a), but in which the last factor was p;; . This would require that the last
symbol in the intermediate message be a one, an impossibility when N is odd.

We now turn to the evaluation of P{® and P{y. Assume that the total message
consists of W symbols. The message space occupied by ones following a one, zeros
following a zero, ones following a zero, and zeros following a one, is 20 WP, p;; ,
20WPypo . oWPypy: , and o WP, p,, , respectively. These, added together, correspond
of course to the total space. Now, consider only the portion of message space occupied
by ones following one. As indicated above, this is 26 WP, P;; . Only half of this space,
however, corresponds to the second half of a pulse of length 20, associated with a one
following a one. Thus, the space probability of the second half of such a pulse is
obtained by dividing 20 WP, p,, by the four quantities listed above (the total space of
the message) and dividing the whole by 2. Similarly, the space probability of a pulse
representing a one following a zero (of length o) is obtained by dividing e WP, py;
by the sum of the four quantities. P{¥ is the sum of these two probabilities, and we
obtain

P{s) = (Pypu + Popo)/CPipy1 + 2Py poy + Popor + P1pyg) (58)

which can of course be modified and re-expressed through use of Eqgs. (36) and (37).
Since

Pipiy + Popyy = Py (59
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a given one is either part of a 11 diagraph or not. Using Eq. (59), we may rewrite
Eq. (58) as

P — PyJQPypu + 2Popoy + Popor + Pupig) (60)

Now, the probability P} is clearly the quantity obtained by dropping the term P,pq,
in the numerator of Eq. (58). We see through comparison of Eq. (60) with that result
that

Py = Pip,, (61

which will prove to be a useful shorthand. In fact, using this formula, together with
the expressions already derived for the contributions coming from Figs. 10(a) and
10(b), we are able to write, for that portion of ¢(7),

[$(T)oaa = (e/o} P(N) poy + P(N — 1) pyy -+ P(N — 1) piy} P
+ [ — (/)KP(N — 1) py + P(N — 2) ppypos + P(N — 3) p2i} P2,
N=3,57.., 7= No+ e (62)

Similarly, when + has such a value that N is even, we may construct, by an entirely
analogous detailed process, the contribution

[$()leven = (/) P(N)pyy + P(N — 1) pypua + P(N — 2) py} P
+ 1 — (/OUP(N — 1) pyy = P(N — 2) pyy + P(N — 2) py} P,
N=2,46,., 7= No-+e (63)

In these equations, we have dropped the subscripts 0 and 1 (used in connection with
Fig. 10) in the symbol P(N) since there is a mutual exclusion with the oddness or
evenness of N. Furthermore, it will be noticed that the cases N = 0, 1 are not included
because P(N) are not defined for negative values for N. These have to be treated
specially and can be worked out using the same general principles, enumerating and
examining the finite number of messages which can be fitted into the short intervals
involved. P(N) is calculated in detail in Appendix C, with the result

P(N) = [1/2(1 — pyy Po)K(I — pyy) 2o (03 pi{DV(psg® — P + (= DYoo + pi{P]
+ 2 — poo — P11) + (Prx — Poo)(— D} (64)
In anticipation of the fact that it will later be necessary to perform a summation

of an infinite series, we introduce transformations in Eqgs. (62) and (63) which allow
these summations to be performed with greater convenience. Thus, we define in
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Eq. (62) n = 3(N — 3) and in Eq. (63) n = 4(N — 2). Using these transformations,
together with Eq. (64), we convert (62) and (63) into

boven = [PES)(I — Po)(3 -+ 3pi — 4P11)]
even 1 — p11Poo
1 — P¥(—3 —3+4
— (PrrPoo)™H [( P11) Poo 11 (‘ pll?;/ioo Pu)]
-+ (_T— — 2;1)[ (I — pr)(1 — poo)(pi — 1) Pl(S) ]
o 1 — pubo

(% — 272) (P11Poo)™ [P{S;(l_—pi;lpoo (1 — 2pn + ﬁ; )] (65)

and
boaq = [( Poo)P(S)
° 1 — p1Poo

> [ (A — p1y) P00P1(S)
1 — puloo
(s)
T A (1 — po)(1 — Pu)z Py
i ( G Zn) [ I — puiPoo ]

@pn — 317%1 a 3)] — (P11Po0)™™

(Bp11Po0 + 317%1 - 8}’11)]

(s)
T ntl 2Py — PuiPoo — P%l) Dol — p1) Py
(o 2”’) (P11Do0) [ T — puidoo ] (66)

The cases for NV = 0 and N = 1 give the following contributions:

€

o= (1= =) PR+ PY (1 — =) + P 5+ Pipu—

P LT (—P{S) e Pn 4 PYp P11P1 >’ C<r<o (67

and

P{S)e

1 T PuP 1(i))

¢ = [ProPo1 - P+ 17:%1] + P(()i)pn (1 — —Z—)

s s Pl P(z)
[(p10p01 + pu + Piy) P( ) P11P(§1) _ 51 _ 1121’11 ]

+ [~ (p1oPor + Pu ‘|“1711) J 2 5 + 2P, 0(18)1711 + Pﬁ) + P(S)Pu], 0K T O

Again, it can be verified that ¢y(0) = ¢,(0), $,(20) = (N =2, ¢ = 0),
(N, e = 06) = (N + 1, e = 0).

Using the portions of the autocorrelation function derived in this way for the
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various integrals of =, we may write the Fourier transform, or the power spectrum,
© -
G(w) = 2 Re f $(r) et dr
0

—2Re[[ g eonar + | 2 $.(7) e dr

o (N+1eo ) © (N+1)o .
+ Y pN,yeordr+ 3 [ gV, 7) e dr
N=2,4,6... * No N=3,5,7... ¥ No

=2Re[ 0 o) e dr -1 fz () et |

(2n+3)o (e2n+a)o

t2re Y [[ g metrdr [ g e ar]  (69)

n=0 (2n+2)c (2n+3)o

or
G(w) = Gy + Gy + Gy + G, (70)

where we have subdivided G(w) into four parts. For G, and G, , the integrated results
will have to be summed as a geometric series. The final results are lengthy but straight
forward. They are summarized in the following equations?:

§
Gy(w) = M_zc;rj_zl sin wo + wzg (cos wo — 1)
Gy(w) = AD%Q—C—UE [2 cos wo — 1]
2C, . .
-+ 5 [cos 2wo — cos wo + 2wo sin 2wo — wo sin wo]
_ Ag 1 sin 3we — sin 2woe — sin wo
Oslw) = w [ 1 — cos 2wo ]
_ 2Bgpypu [ sin 3wo — §in 2w — pyq Pog SiN WO ]
w 1 — 2py3 pop €08 2w0 + (P13 Poo)?
C
+ ==
gw

X {(Bwo sin 3wo -+ cos 3we — 2wo sin 2wo — cos 2wo
— 3wo sin we — cos wo + 1)

<+ (1 — cos 2wa)}

_ 2Dgpypu

wio
X {(Bwo sin 3wo + cos wo — 2we sin 2wo — ¢0s 2wo — 3wy, Pop SIN WO

— P11Poo €OS WT ~+ Py Poo)
1 4+ (P11Poo)* — 2P11Poy €08 2wo]} (71)

¢ Note that here we did not include the contributions due to delta functions at wo = 0.
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Ay [ sin 4wo — sin 3wo — sin 2wo + sin wa ]
T e [ 1 — cos 2wo

_ 2Bypoypu [ sin 4wo — sin 3wo — Pyg Poo SN 2wo —+ Pry Poe SIN wo ]
w 1 — 2p11Poo €08 2000 + (P11 Poo)*

Co

w?c

_l_

X [(4wo sin 4wo + co8 dwo — 3wo sin 3wo — cos 3wo
— dwo sin 2we — cos wo + 3wo sin wo + ¢cos wa)

< (1 — cos 2wo)]

2P Py

wic

X {(4wo sin 4wo -~ c0s dwo — 3wo sin 3wo — €os 3we — 4wopy, Py, Sin 2wo

— P11Poo €08 2w + 3Py1 Poowo SIN w0 - Py Poy COS wO)

= [1 + (P12Po0)® — 2P11Poo €08 2wal} (71)

= PP(1 — po)Bpy — 3 — 3p1)/(1 — P11 Poo)

— PO — p1) poo(3p% — 8911 + 3011 P00)/(1 — P11 Poo)
= PP — pi)*(1 — poo)/(1 — P11Po0)

= PP — p1) Poo2P11 — PrPon — PRI — Pr1Doo)
= P21 — poo)3 — 4py + 303/ — pupoy)

= P {S)Poo(1 — pu)@p1 — 3 — 3p1/Poo)/(1 — P11Poo)

-G (72)

= PJ(.S)pOO(I — P11 — 2p1y + P11/Po)/(1 — P11Poo)

- P§S)

= (*‘P{S) + %P{i) + P01P(()i) %PuP{i)

— 2 P(s) . P(s) __ _1_P(s) 1 P(s)
(P10Por + P + pid) Pr P1ilfol 311 5 D11l11

= —(p1wPo + Pu T Pfl) P1(8) + 2P11P(§18) + Pl(ls) + P1(15) DPu

= 2P11/(2P11—§—2P00+P01—}~P10), Péi) = P01/(2P11‘|‘2P00+P01+P10)

Figure 11 is a plot of the power spectrum according to Eq. (71). The values of
the various probabilities are either given by Eq. (42) or can be calculated by Egs.
(36)-(41). A comparison of Figs.8and 11 shows that not only has the bandwidth been
reduced, but also the curve once again has a simple bell shape. Insofar as the half-width
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wad
Fig. 11. Power spectrum for a first-order Markovian source after optimization
of transmission times, py; = pyy = 0.382, t1y = t, = lo, 1y, = Ly = 2o.

can be used as an index of overall breadth, it has gone from wo = 3.88 to wo == 0,96,
At the same time, the average time of transmission per symbol

{t) = [2Py + 2Py + Py + Pylo
has only increased by a factor of 1.382. This leaves us with a factor
(3.88)(1)/(0.96)(1.382) = 2.92

which can be used to increase the speed of transmission (reduce average transmission
time by using a smaller o) without increasing the bandwidth. Thus, we can transmit
almost three times as fast without paying for it with increased bandwidth. In the case
of the first-order source with memory, therefore, optimization of transmission times
using the statistical thermodynamic formalism is very worthwhile.

5. CONCLUDING REMARKS

From the foregoing, it appears as though optimization of word transmission
times (compact coding) by use of the statistical thermodynamic formalism does not
always lead to a simultaneous reduction of message transmission time and bandwidth.
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(For a given scale, it does, of course, always lead to reduction of transmission time.)
On the other hand, the two cases we examined were distinguished by having source
without and with memory, respectively. It may very well be that optimization of
transmission times for sources with memory will always allow some narrowing of
bandwidth along with a reduction of transmission time, provided that the correlation
between symbols in such that it is more likely for ones to follow ones and zeros to
follow zeros. In this case, the signal will contain long sequences in which the pulse
height remains unchanged. These sequences might be compressed and expanded,
relatively, in such a way that total time of transmission is reduced without incurring
bandwidth penalties.

Since it should be clear (from the difficulties which we have encountered in
deriving analytic expressions for autocorrelation functions and power spectra in
relatively simple cases) that the evaluation of these functions for the most general
case may be impractical, it would be useful to have a general theorem which tells us,
in the absence of noise, under which circumstances both bandwidth and transmission
time can be reduced simultaneously. We shall reserve the consideration of this question
for a later investigation.

In any event, we have been able to show, in certain instances, that the statistical
thermodynamic formalism does allow improvement of both bandwidth and trans-
mission time, and have developed techniques for exploring the autocorrelation
functions and power spectra in relevant situations in order to ascertain whether or
not such improvement are possible.

APPENDIX A. SOURCE WITHOUT MEMORY WITH t, =20, t;, =0

Let P, be the probability of source emitting a zero, P; the probability of source
emitting a one, and P(N) the probability of a message exactly N units of o long. We
can write a recursion formula for P(N),

P(N)= P(N —2) P, + P(N — 1) P, (AD)
This difference equation has a solution of the following form®2:
P(N) = a, XV + a, (A2)
Substitution of (A2) into (A1) yields
a XV + gy = a; P X% 4 Py XN + a,
1 = PX*+ P X (A3)
Since P, + P; = 1, Eq. (A3) has the following solutions for X:
X=1 P, —1 (Ad)

We can discard X = 1 since we expect P(N) to be a function of both N and P, .
Thus, we write

P(N) = a)(P, — D) + a, (AS)
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Now, we use the boundary conditions to determine a; and a,. For P(1), the only
whole message that can fitted into a unit ¢ is a one, since a zero requires two units
of . Thus,?

P(1) = P, (A6)

For P(2), where two units of ¢ are available, it is possible to have either a zero or
two one’s. Thus,

PQ2) = P?+ Py (A7)
Combining (A5) with (A6) and (A7), we get the desired result,
P(N) = [(Py — DV — 1]/(P; — 2) (A8B)

Notice that P(0) = 1, P(w0) = 1/(2 — P)).
A simple test of (A8) with N = 3 yields

PQ) = P®+ Py+ Py + Py = [(Py — 1) — 1]/(Py — 2)

which is satisfactory.

APPENDIX B. SOURCE WITH MEMORY BUT WITH
tpo=ty=ty=ty=o0

Let P{™ denote the probability of having exactly a whole number of messages
in No with the last symbol i, zero, or one. Also, let p;; be the conditional probability
of j following 7; again, i, j can be one or zero. We can now write two coupled recursion
formulas:

Py(N) = PN — 1) piy + PN — 1) poy (B1)
Py(N) = Py(N — 1) prg + Po(N — 1) pgo (B2)

In order to decouple Py(N) from Py(N), Eq. (B1) is rearranged to give
Py(N) = (1po[P1" — puuPi"] (B3)

Substituting Eq. (B3) into (B2), we have

P {Nﬂ) — PAN)pu + Poo) — P {Nﬂl)(])lopm — P11Po) = 0 (B4)
Now, the solution P;(N) has the form
Pi(N) = ANY + BAY (B5)

where A; and A, are two independent parameters. For simplicity, substitute P(N) = AV
into Eq. (B4):

A — M1y + Pog) — AU P1oPor — PuPen) = O

5 Such a choice also makes the correlation function continuous at ¢ = .
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Dividing by AV,
22— Mpi -+ Poo) — (ProPor — PuPos) = 0 (B6)

But, from Eq. (39),

Pro=1—pu, Por =1 — pog s PP — P1iPoo = 1 — Puu — Poo

Equation (B6) can be rewritten as

22— Mpn + Poo) + (P11 +Poe— 1) =0 (B7)
having roots
A=py+pu—1 1 . (BY)
Thus,
Py(N) = A(poy + pn — DV + B (B9)

In the determination of 4 and B, the proper boundary conditions are
Py(1) = pn (B10)
Py(2) = pi1 + PrwPu (B11)

Notice that Py(1) is p;, rather than py, -+ py, - This introduces the requirement that
these N units are preceded by a one and that they must end in one. The same is true

for P,(2).
Combining Egs. (B10), (B11), and (B9), we have
A = (pu — D/(p11 + Poo — 2) (B12)
B = (pgo — D/(p11 + Poo — 2) (B13)
or

PiN) = [(prn — D/(p11 + Poo — DU P11 + Poo — DY + [(Poo — D/(P11 + poo — 2)]
(B14)

Py(N) can be calculated in the same way. But we know that Py(N) + Py(N) = 1;
therefore, we have, immediately,

Py(N) = [(1 — p)/(Pry + Poo — D P11 + Poo — DY + [(p1n — DI(P1y -+ Poo — D]
(B15)

APPENDIX C. SOURCE WITH MEMORY AND TRANSMISSION
TIMES OPTIMIZED TO t,=t, =20, t, =ty =0

Here, we shall use the same notation as in Appendix B. As before, we can write

P(N) = P(N — 2) pyy -+ Pf(N — 1) py, (@1}
Py(N) = Py(N — 1) p1g + Po(N — 2) pgo (C2)
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To decouple Py(N) and Py(N), we rewrite Eq. (C2) to give
PN — 1) = (1/p1))[PokN) — Po(N — 2) poo] (C3)
Now, substitute Eq. (C3) into (C1); after simplification, we have
Py(N + 1) — Py(N — 1)1 + poopr1) + Po(N — 3)(pupo) = 0 (C4)

Notice that if Py(N) had been represented in terms of P;(N) and substituted intc
Eq. (C2), we would have obtained

PN+ 1) — P\(N — 1) + poop11) + PN — 3)(pupoy) = 0 (Cs)

From Egs. (C4) and (C5), it is observed that Py(N) and P,(N) satisfy the same equation.
To simplify matters, define

P(N) = Py(N) + Py(N) (C6)
Then, by combining Eqgs. (C4) and (CS5), we have
P(N + 1) — P(N — D(1 -+ poop11) + P(N — 3} p11Poo) = O (€7

Now, the particular solution P(N) = AN is substituted into Eq. (C7):

MFL— AT - poopan) + AV pry Pog) = O (C8)

Dividing through Eq. (C8) by A¥~3 gives

At — X1+ poyp1) + PrPo = 0 (&)
Clearly,
A =1, puPu (C10)
and
A= £1, L(pupe)*”® (C1p

The general solution is
P(N) = A, (pupe)* + Ax(—pupon)* -+ A5 + A(—1)Y (C12)

There are four constants in Eq. (C12) to be determined by four boundary conditions.
First, note that when P(V) was used in Egs. (62) and (63), it was always implied that
one preceded this train of N units of o. Therefore, when only one o unit is involved,
the only message which fits is a zero. Thus

P(1) = pyy = Py(1), P(1)=0 (C13)

there is no way to fit a one following a one into a unit of length o.
For P(2), either a one or a zero followed by a one can be fitted. This gives

PQ2) = pu1 + probo = F1(2), Py2) =0 (C14)
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Similarly,
P3) = pubio + PwPorP1o 1+ ProPoo = Py(3), P(3)=0 (C15)
P(4) = proPoriProPor T ProPorPi1 T ProPooPmr 1~ PuuPu + PuPioPor = P4, P#H=0
(C16)

Equations (C12)-(C16) enable us to write

Ay = [(1 — pu)/2(0 — p11poed)llPoo — (P11P00)'?]
Ay = [(1 — pu)/2(1 — P11 Poo) [ Poo (PP (C17)
As = (P11 — Poo)/2(1 — p11Poo)s Ay = (P11 — Po)/2(1 — P11.Poo)

Substitution of Eq. (C17) into (C12) yields

1 —py
PNy = —— P11 1/2 N/2
(N) 20 — puPu) (200 — (Poo P10 *W(Poo P11)

1 —
3 Lo - (PP 1 (7 o) ]

2 — pu — Poo P — Poo (—1)¥
2(1 -~ p1Poo) 2(1 — p11.Poo)

1
. S— N2 — 172
2(T — P1aloo) (« Pr)(P11Poo) ™ Poo — (PooP11)

+ (=D poo + (PooP1) 21 4 (2 — p1x — Poo) + (P11 — Poo)(— DY)  (C18)

For even N, or N = 2n, Eq. (C18) becomes

P — [1/0 — pupe)l{l — (PooPr)™™ — Pooll — (Peop)™l  (C19)

For odd N, or N = 2n + 1, Eq. (C18) becomes

PO = [(1 — p)/(1 — PPl — (P11P00)"™"]

Notice that we have dropped the subscripts 1 and O in connection with P(N).
This is because of the mutual exclusiveness with respect to odd and even N. This
mutual exclusiveness (subscript 1 going with odd N and subscript 0 with even N)
can be proved through application of the recursion formulas (C1) and (C2) together
with (C15) and (C16).
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