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Employing the "statistical thermodynamic formalism" developed in an earlier paper, 
it is possible to determine "compact" sets of transmission times for the words of PCM 
(pulse code modulation) messages. In particular, we deal with pulses of zero or unit 
heights. These compact signals, which lead to shorter message times and eliminate 
redundancy even when successive words are correlated (Markov source), may, however, 
require additional bandwidth. We examine two simple cases where autocorrelation 
functions, and therefore power spectra, can be evaluated. In one case, that of the 
Markov source, it proves possible to accomplish both shorter transmission time and 
narrower bandwidth (half-width of the power spectrum), showing that optimization 
of transmission times can be very worthwhile. Techniques for deriving autocorrelation 
functions are discussed at length. 

KEY W O R D S :  Pulse code modulation; transmission time; bandwidth; statistical 
mechanics ; power spectrum. 

1. I N T R O D U C T I O N  

In  a recent  paper ,  (1) the authors  developed a connec t ion  between the methods  o f  
s tat is t ical  t he rmodynamics  (especially the me thodo logy  associa ted with the many-  
body  p rob lem)  and  cer ta in  p rob lems  o f  coding,  in in fo rmat ion  theory.  In  tha t  paper ,  
a par t i cu la r ly  simple concrete  example  was t reated,  represent ing a case o f  pulse code 
m odu la t i on  (PCM).  I t  m a y  be descr ibed as follows. A cont inuous  signal is sampled,  (2) 
say at  t ime intervals  o f  1/2co, where ~o is the bandwid th ,  and  the samples  are conver ted  
in to  b ina ry  numbers  for  t ransmiss ion by pulse code m o d u l a t i o n  (PCM)  (a) over  a 
noisy  channel.  In  order  to  comba t  noise, check digits (4) may  be a d d e d  to each b ina ry  
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code word; and to gain a measure of  compactness in advance of  binary coding, some 
procedure, such as Huffman (5) or Fano (~) coding, may be employed. As a final 
generalization, the same procedure may be used for the transmission of discrete, as 
well as continuous, messages. For example, the binary numbers, instead of representing 
samples of  a continuous message, may correspond to the letters of  the alphabet which 
appear in the sequence of some text being transmitted. In any event, the pulses are 
reconstituted into the original signal at the receiver end of the system. 

The transmitted message then consists of  a sequence of zeros and ones. This 
sequence will have a set of statistics generated by the constraints in the original 
message, those implicit in Huffman or Fano coding, and in the method of 
assigning check digits. The chance that a given digit will be zero or one depends, in 
some way, on the preceding digits. This correlation amounts to a redundancy which 
can still be squeezed out of  the message to be transmitted. Even in the absence of  
correlation, there may be redundancy implicit in unequal frequencies of  appearance 
of zeros and ones. We assume that the statistics of  the message can be determined by 
a suitable investigation. 

Usuaully in PCM the pulses representing zeros and ones are of  equal duration. 
By assigning different transmission times to different pulses, depending upon the 
statistics, it is possible to increase the rate of  transmission. Of  course, this is possible 
by merely shortening the duration of each pulse in scale; but for this, one pays the 
price of  greater bandwidth. An important question, however, is the following. Can 
one, by choosing pulse transmission times of various magnitudes, decrease mean 
transmission time without simultaneously increasing bandwidth ? 

In the present paper, we concentrate on examining certain aspects of  this question. 
We are not able to show that this is generally possible, but have worked out two 
nontrivial cases in which the above-mentioned goals can and cannot be achieved, 
respectively. Assuming that we are presented with a set of  source probabilities, we 
make use of  the statistical thermodynamics formalism outlined in Ref. 1 in order to 
choose pulse transmission times which match the code to the source and make it 
compact. 2 In order to examine the bandwidth question, we evaluate the autocor- 
relation functions (7) of  the transmitted signals (as they depend on message statistics 
and assigned pulse transmission times), and, then, in accordance with the requirements 
of  Wiener theory, (8) we derive the exact power spectrum (91 by Fourier transformation. 
With the power spectrum in hand, it is possible to estimate bandwidth. In each 

2 The term "compact" in the present case should really be replaced by "compact relative to scale." 
For example, suppose we are confronted with a source having unequal probabilities of word 
emission. Intuitively, one would expect the least probable (least frequent) word to be assigned the 
largest transmission time. There may be an additional requirement that this longest time be no 
shorter than a certain minimum. Then, subject to this requirement, the code can be made "compact" 
(made to have the shortest mean transmission time per word); the scale being fixed by the require- 
ment of fixed largest transmission time. A practical example in which such a requirement exists is 
illustrated by the case when bandwidth is limited by a certain maximum. Since short transmission 
times are almost certain to be accompanied by large bandwidth, the above-mentioned "maximum" 
in bandwidth will force the scale of transmission times to be larger, and, in particular, will set a 
lower limit on the largest transmission time for a compact or optimized code. 
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instance, the bandwidth is determined for the case in which all pulses are of the same 
length regardless of the statistics, and for the case in which transmission times have 
been optimized by the above-mentioned matching procedure. Comparisons are then 
made to see if narrowing is possible while yet achieving minimum transmission time. 
In this way, the application of the statistical thermodynamic formalism to the 
investigation of this possibility and, when it is possible, to the selection of otpimized 
transmission times, is illustrated. 

In the low, white Gaussian noise case, the noisy channel coding theorem (~~ 

I = coTlog2[1 -~ (P/N)] (1) 

(where I is the maximum amount of information in bits which can be transmitted in 
time T through a channel of bandwidth w, having average signal and noise powers P 
and N, respectively) places little or no restriction on the product coT. Therefore, the 
possibility of maintaining I fixed while reducing both co and T is very real. Stated 
another way, for the case of low noise one will in most cases be operating below 
channel capacity. 

2. T H E  W I E N E R - K H I N C H I N E  T H E O R E M  

The Wiener-Khinchine theorem ~s) states that the autocorrelation fnnction r 
and the power spectrum G(co) are a Fourier transform pair: 

G(co) = (oo e - ~ r  dr (2) 
- - c o  

qS(-r) = (1/2rr) f G(~o) e r176 rico (3) 
- - o o  

in which co is the angular frequency and r is the quantity defined in connection with 
Eq. (4). For signals generated by complex mechanisms (for example, sources using 
English grammar) in which repeated experiments performed under similar conditions 
produce results having the same statistical properties, the correlation function may 
be written as an ensemble average, 

oo co 

r = f dylf d y z y l y 2 p ( y ~ , y 2 , r )  (4) 
- - c o  - - c o  

where yl and Y2 are amplitudes of the signal taken at times an interval r apart, 
and P(Ya,  Y2, r) is the joint probability density function for the process. The double 
integration represents the ensemble average. Thus, 

O('c) =- ( YlYzP(Ya , Y2 , "c)}E (5) 

In the cases which we study, only ones and zeros will be transmitted, and Eq. (5) 
simplifies to 

r = (p(1, 1, r)}E (6) 
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3. MEMORYLESS SOURCE W I T H  U N E Q U A L  EMISSION 
PROBABILITIES 

Assume that the PCM signal consists of  ones and zeros whose appearances in the 
messages are completely uncorrelated, i.e., the probability of  emission of a one or 
zero is completely independent of  whether the symbol emitted previously was one or 
zero. However, we assume that in the overall message, ones and zeros appear with 
unequal frequencies. For example, the fractions or probabilities of  ones and zeros 
could be 

P1 = 0.618, Po = 0.382 (7) 

respectively. These unequal probabilities represent information redunancy because 
the maximum information in a message composed of a fixed number of  digits is 
transmitted when pl and P0 are equal. I t  is therefore possible to adjust the relative 
transmission times for ones and zeros so as to minimize the overall transmission time 
of the message, except for a scale factor, m Suppose, however, we ignore this optim- 
ization step and arbitrarily assign the following transmission times: 

h - -  to = e (8)  

A portion of a typical message might then look like Fig. 1. In order to evaluate the 
autocorrelation function, we proceed as follows. Let 

-r = Ne  + e (9) 

where e ~< ~r and N is an integer. When N = 0 or r = E ~< ~, there are two types of  
situations. There are illustrated in Fig. 2. In Fig. 2(a), the end points of  ~ are both 
within the same unit pulse, while in Fig. 2(b), they lie in different pulses. As T --~ 0, the 
probability of  the configuration in Fig. 2(a) will exceed that in Fig. 2(b), while as 
~- --~ e, that in Fig. 2(b) will become the more probable. In  fact, it is easy to see that 

probability of T entirely within a unit e is 1 - -  (T/e) 

probability of  ~" having ends in two different units of cr is ~'/e 
(10) 

In order for ~- to contribute to the right side of  Eq. (6), both ends must fall in regions 
occupied by ones. Therefore, for T ~< e, 

~o(~-) = ( e ( 1 ,  1, ~ ) ) ,  = (~-/e) e ?  + [1 - ( ~ - / e ) l e l  (11) 

Fig .  1, 

-qo - 

fl 
t ime 

T y p i c a l  m e s s a g e  f o r  a z e r o t h - o r d e r  M a r k o v i a n  s o u r c e  tz = to = a.  
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(b) 

time �9 

Fig. 2. Possible configurations for ~ = ~ < a. 

in which P1 is the a pr ior i  probab i l i ty  for  the occurrence o f  a one. As we might  expect,  
when -r ~ 0, 

r --- P1 (12) 
and  for  z --+ e, 

r - +  Pz 2 (13) 

W h e n  7 >~ or, or  N = 1, 2, 3,..., i t  is clear tha t  

CN(~') = p 2  (14) 

since the probabi l i ty  that  the ends of the interval r fall in  uni t  pulses is simply the 

product  of the independent  chances such that  uni t  pulses exist. Thus, the auto-  
correlat ion funct ion for messages from this source has the form illustrated in Fig. 3. 

r P1~2 
P l  

o o" 2Or 

Fig. 3. 

T Ii 

Autocorrelation function for a zeroth-order Markovian source, Pz = 0.618, Po = 0.382 
tz = to = 1~. 
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Since r must be an even function of 7, the power spectrum described by Eq. (2) 
can be expressed in the form 

o 

- - o o  - - ~  0 

0 oo 

= f~  e '~r § fo e-'~r dT 

o~ 

= 2 Re f e -~ ' r  dr 
0 

(15) 

Because r has different forms for r greater and less than a, Eq. (15) exhibits two 
terms 

G(co) = 2 Re r e -i~ dr + fo CN(T) e i~, dr] (16) 

In this equation, Co(r) and Cu(r) come, respectively, from Eqs. (11) and (14). Upon 
carrying out the indicated integrations, we obtain a 

G(co) -- [2PAP0(1 -- cos coe)/coZeZle + 27rP1~ S(co) (17) 

the desired form for the power spectrum, and in which ~ is the Dirac delta function, 
equal to infinity for r = 0 and zero otherwise. 

Figure 4 is a plot of G(co). Several points deserve comment: (1) The half-width 
is independent of Pi and P0, although the value of G(o)), at half-width, is dependent 
on these quantities. (2) As e becomes smaller, the half-width increases; the power 
spectrum is broadened. This expected result is evident in the fact that G(co) depends 
on the product cocr rather than on co alone. 

Having obtained the power spectrum for the case in which transmission times for 
ones and zeros are identical, we next optimize these times, matching them to the source 
probabilities specified by Eq. (7). We define to and tl as the transmission times going 
with zero and one, respectively. Since the source is without memory and we wish the 
code to be maximally compact, the appropriate relation between source probabilities 
and word transmission times is Eq. (37) of Ref. 1, with q of that equation set equal to 
unity in accordance with Eq. (42) of the same reference. Thus, we may write 

t 1 = - - m - ,  In P1, t o = - - ~ r ,  In P2 (18)  

in which K, the pseudo-Boltzmann constant, is log~ e and T, is the information theory 
temperature, the star being appended in order to distinguish it from the quantity ~" 
used in the previous equations of this paper. Substitution of the p values as specified 

Note 8(to) = z3(~oz), m~ 
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1 . 0  

r 

Fig. 4. 

0 1 2 

021J 

Power spectrum for a zeroth-order Markovian source, Pa = 0.618, P0 = 0.382, tl = to = l~r. 

by Eq. (7) into Eq. (18) indicates that the opt imum fi is just half the opt imum to, 
so that we may write 

tl = �89 = a (19) 

where ~r is again the unit pulse length and determines the scale. As emphasized in 
Ref. 1, when we deal with continuous rather than block coding, compact message 
times are not determined absolutely but only to within a scale factor. 

With this choice of  transmission times, the portion of a typical message exhibited 
in Fig. 1 now looks like Fig. 5. Even so simple a change as that contained in the 
prescription given by Eq. (19) makes the determination of the autocorrelation function 
considerably more difficult. In fact, our choice of  source probabilities has allowed 

Fig. 5. 

time 

Typical message of a zeroth-order Markovian source after optimization 
of transmission times. 
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the optimum transmission times to be integral multiples of a common unit, and it 
was for this reason that the specific choice in Eq. (7) was deliberately made. At the 
moment, it appears as though the analytical evaluations of  autocorrelation functions, 
when transmission times are not related in an integral manner, would present almost 
insuperable difficulties. Nevertheless, if the problem is studied for source probabilities 
demanding a variety of integral relationships, some insight into the behavior expected 
under nonintegral conditions might be obtained by interpolation, although care must 
be taken to ensure that singular situations do not arise. 

Once again we make use of Eq. (9). Since, in order for an interval z to contribute 
to the right-hand side of Eq. (6), both of  its ends must fall within pulses representing 
ones, and, in this as it was in the previous case, the transmission time for a one is g, 
we have, for N = 0, a result similar to Eq. (11), which we now write as 

qb0(z ) = ('r/~r)[P~S)] z + [1 -- (-r/g)] p~4 (20) 

Instead of  Pa we have used P~*). This quantity may be called the space probability of a 
one as opposed to Pa itself, which is the time probability of a one. In fact, the relation 
between P~*) and Px is illustrated by the following equation 

p~s) ~_ p1/(p1 q_ 2P0) (21) 

From this it can be seen that P~) is essentially the fraction of the space of  the 
message covered by pulses representing ones. The coefficient of the second term on 
the right in Eq. (20) is the probability that the interval z falls entirely within a unit 
pulse of length g. As we have indicated earlier, in order for it to contribute to the 
ensemble average leading to the autocorrelation function, it must also fall within a 
spatial interval occupied by a one. Since the coefficient already takes care of the 
probability of z falling entirely within a pulse of length a, we need only multiply it 
by the chance that one end of ~- falls within the space of a one. Clearly, this proba- 
bility is given by Eq. (21), since the right-hand side represents the fraction of message 
space occupied by ones. Since the first term on the right of Eq. (20) refers to situations 
in which the ends of T fall in regions occupied by two different ones, and the source 
has no memory, so that ones are emitted with independent probabilities, it is [p~)]2 
which appears, multiplied by the coefficient -r/(r which gives the chance that z does 
not fall entirely within a unit ~. For N ~> 1, the expression for the autocorrelation 
function is similar to that given by Eq. (20) except that each term in that equation 
must be modified by a factor which accounts for the fact that several different mes- 
sages may be fitted into the interval between the ones in which the ends of the interval 
-r(now long enough to span many units of g) fall. More precisely, these factors 
represents the probabilities of complete messages being fitted into the above-mentioned 
intervals. They are represented by the quantities P ( N )  and P ( N  -- 1) in the following 
equation, which represents the autocorrelation function for the case N >~ 1 : 

~ ( z )  = (e/g)[p(~)]2 P ( N )  q- [1 --  (~/g)][p~s)]2 P ( N  -- 1) (22) 

A little thought will show that E/a is the chance that -r cover N whole units of a, 
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not including the two fractional units terminated by the end points of  r. As before, 
[pls)]2 is the probability that both end points are ones. P(N) is the probability, or 
normalized weight factor, that a complete message can be fitted into the interval of 
length Na. This quantity was not required for the noncompact case with t~ = to = ~, 
since there it was always possible to fit some message, ones and zeros occupying the 
the same space interval. Thus, (E/a)[P~*)] ~ P(N) gives the contribution to the auto- 
correlation function for cases where r "covers" N whole units. In contrast, 
[ 1 -  (e/a)][p[s)]2 P ( N -  1) accounts for configurations such as that exhibited in 
Fig. 6(a), in which one less unit is "covered." 

The function P(N) is evaluated in Appendix A. The result is 

P(N) = [(P1 -- 1) N+I - -  1]/(Pz - - 2 )  

since 

E = r - - N ~  

Substitution of Eqs. (23) and (24) into (22) yields 

(/'1 1) N 
~N(r) = [eft)]2 [(el __ I)N ! __ N(PI -- I) N + ] 

P1 -- 2 J 1. P - - 2  

(23) 

(24) 

(25) 

where N = 1, 2, 3,.... From Eq. (15), we find 

oo 

G(w) = 2 Re f e-~~162 dr 
0 

oo _ ( N + I )  

: 2  Re [ f :  r  -i~ dr + n~=l JN~ CN(T)e -i~~ dr] (26) 

in which r and CN(r) are given by Eqs. (20) and (25), respectively. The first term 
on the right of Eq. (26) can be treated as before, but the second term must be integrated 
between Ne and (N -k 1)or, and the integrated results summed over N as a geometric 

~ - -  T=NU+s �9 ] 

- ~ o ~ -  
(a) 

I ' T ~I 

(b) 

t ime �9 

Fig. 6. Two configurations that contribute to the autocorrelation function. 
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Power  spec t rum for a zeroth-order  M arkov i an  source after opt imizat ion 
of  t ransmiss ion  times, Pz = 0.618, P0 = 0.382, tl = 1~, to = 2~. 

series to 
forward but somewhat  lengthy, leads to the following expression: 

2(1 - -  P0[P~*)] 2 [.cos ~o0` - -  cos 2600` - -  (P1 - -  1)(1 - -  cos 60a) ] 
G(60) 

602~r [ Pz - -  2(P1 - -  1) cos o0cr ] 

obtain the final result in closed form. This procedure,  which is straight- 

2 [P~S) ]2(P1(p1 ----2)l)60Sill 600" -~ P,~-22[P~)] = [ sin~600  ̀ =8(~o)] 

+ 2P~*)(1 - -  P~*)) 2[P~S)]~ sin oxr 
(1 - -  cos w0`) + (27) OJ20  ̀ 60 

Figure 7 shows a plot  o f  G(60) as a function of  a~m The half-width now occurs at 
cod = 2.11, compared  with the previous value of  600` = 2.78, and the bandwidth  has 
been nar rowed by a factor  fo 1.32 by the opt imizat ion o f  t ransmission times. However ,  
with 0  ̀unaltered, the average transmission t ime 

( t )  = (P1 q- 2P~)~ = 1.3820` (28) 
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is increased by a factor of 1.382. I f  we wish to do no more than eliminate this increase, 
to say nothing of reducing ( t )  to a value less than ~ so that a reduction in trans- 
mission time is achieved by optimization, cr will have to be reduced by a factor of 
1/1.382. This means that the width of the power spectrum, at half-width, will have to be 

co = 2.11/(~/1.382) : 2.92/cr (29) 

compared with 

co = 2.78/a (30) 

for the previous case in which transmission times were not optimized. Thus, in the 
present case it is not possible to reduce bandwidth and message time simultaneously. 
I f  one wishes to reduce message time by reducing e by a factor larger than the 1/1.382 
which demands the bandwidth shown in Eq. (29) (and which already exceeds that of 
the nonoptimized case), the bandwidth will have to exceed the value given in Eq. (3 
by an even larger amount. In such a case, no advantage will be gained through use of 
a compact code unless bandwidth is not a critical consideration. 

In the next section, we study the optimization and bandwidth problem for a 
source having memory; to be exact, a first-order Markovian source in which memory 
extends only to the previously emitted word. Here, we shall discover that it is possible 
to reduce both message time and bandwidth simultaneously so that even when 
bandwidth is a consideration, transmission time optimization still represents an 
advantage. 

4. A FIRST-ORDER M A R K O V I A N  SOURCE 

The application of  the statistical thermodynamic formalism to the optimization 
of  a first-order Markovian source emitting ones and zeros was discussed in Section 7 
of  Ref. 1. In that section, it was shown that the relation between h~, the optimum 
transmission time for the j th  word emitted by the source after the ith word (both i 
and j  can be zero or one) and Pi j ,  the probability that the ith andj th  words are emitted 
in sequence [probability of the digraph (ij)] is given by 

Pit =- (Sij/A)(aA/OSr , i' r i, j '  ~= j (31) 

where 

S~-=  e-%/~. (32) 

and A is the maximum eigenvalue of a secular equation originating from the application 
of  the matrix method to the evaluation of partition functions. With the evaluation of 
this eigenvalue and substitution in Eq. (31), it can be shown that 

e~l = �89 + [(S~ --Soo)/C]}, 

eo0 = ~s00(i + [(s00 - s11)/c]}, (33) 

P~o = Po~ = S~oSol/C 

where 

c = [(Sll  - s00) 2 + 4 s l0 s0d  1/2 (34) 
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Equat ions  (33) and (34) can be inverted to yield 

S ~  = 2P~/(1 - -  Poo -}- P~I), Soo = 2Poo/(1 - -  PI~ -~ Poo) 
(35) 

SloSol ~-- ( 1  - -  P l l  - -  eoo)2/( 1 - -  P ~  @ P0o)(1 @ P ~  - -  Poo) 

Equat ions  (31)-(35) constitute the recipe for  optimizing t ransmission times if  the 
message statistics are known,  or vice versa. We use them in the present  section. 

We now introduce the conditional probabi l i ty  PiJ, which represents the chance 
that  the j t h  word  will be emit ted given tha t  the ith word  was emit ted previously. 
This is not  to be confused with the digraph probabi l i ty  Pis introduced earlier. I f  the 
a priori probabil i t ies for  emission of  a one or zero are P1 and Po ,  respectively, then 
the relations between the condit ional  and digraph probabili t ies are 

PaPl~ = Pa~, PaP~o = [ l o ,  PoPoo = Poo, PoPo~ = Po~ (36) 

and 

P1 = (1 - -  Poo)/(2 - -  Poo - -  PIO, Po = (1 - -  p10/(2 - -  Poo - -  P~I) (37) 

Some addit ional  useful relations follow: 

Pa + P o =  1 (38) 

P00  -1- POl = 1, Pll  + Plo ---- 1 (39) 

Pl l  @ Plo = P1,  Poo q- Pol --~ Po ,  /~ : Pol (40) 

p ~  = 2P~z/(1 - -  Poo -t- P~x), Poo = 2Poo/(1 - -  PI~ + Poo) 
(41) 

Pao = (1 - -  Poo - -  Pll) /(  1 - -  P o o  " ~  Pll),  Pol = (1 - -  Poo - -  PiO/(1 - -  P~a -r Poo) 

F r o m  these equations,  it is clear that  once Po0 and Pll are given, the message statistics 
are unambiguous ly  defined. 

As in the previous example  dealing with a memoryless  source, we calculate the 
autocorre la t ion  function in terms of  the condit ional  probabili t ies for  bo th  the non- 
compac t  and  compac t  cases, respectively. To  simplify our discussion without  losing 
the point ,  we deal with a source with the following condit ional  probabili t ies:  

P m =  Plo = 6.18, Pl l  = Poo = 3.82 (42) 

We begin with the noncompac t  case, and instead of  optimizing t ransmission times we 
choose 

tll ~ q o  ~ to1 ~ too ~ ~ ( 4 3 )  

where, as indicated earlier, ti~. is the t ransmission t ime for  t h e j t h  word  following the 
ith word.  As in Eq. (9), we write z = Ng + E. For  N = 0, we define r as r  and it 
follows tha t  

r - -  [1 - -  0-/~)] P1 -t- 0-/~) PaP~I (44) 

Again, the factors 1 - -  (z/g) and  -r/~ are the respective probabili t ies that  the interval 
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~- falls entirely within a unit q, or bridges two units. The unit within which z falls or  
the units bridged must  be the loci o f  ones in order that  a contr ibution to ~(T) be made,  
i.e., the ends o f  -r must  fall in ones. Thus, in Eq. (44), the factors ment ioned must  be 
multiplied by the probabilities that  ones are in the called-for locations. In  the first case, 
since we deal with a single one, within which ~- lies, the appropriate  factor  is the 
a priori probabil i ty Pa for the occurrence o f  a one, while in the case that  ~- bridges 
two ones, we require the digraph probabili ty P1A1. These mutually exclusive 
probabilities are added to give q~0 in Eq. (44). 

For  N ~ 1, 

(~N(~) ---- (E/a) ea(N -? 1) P~ -k [1 - -  (E/a)] PI (N)  P1 (45) 

The origin of  this equation is similar to that  o f  Eq. (22) with, however, some modi-  
fications. The factors E/q and 1 - -  (E/q) are the probabilities that  ~- spans N or  N - -  1 
whole units o f  q (including the units within which the ends lie; this would be N ,-k 2 
or  N -k 1 units, respectively). Px(N) is the probabili ty that  a message o f  exactly N 
units has its first unit following a one, while its last unit  is a one. Thus, consider the 
the second term on the right of  Eq. (45). The first factor  gives assurance that  ~- spans 
N -  1 whole units as described previously. The last factor  measures the probabil i ty 
that  the unit  within which ~- begins is a one; while the middle factor  is a conditional 
probabil i ty,  given the first unit is a one, tha t  the following message o f  N units ends 
with a one so that  this -r makes a nonzero contr ibution to q~. The first term in Eq. (45) 
is const ructed in a similar fashion, and deals with the mutually exclusive situation 
in which -r spans N whole units (N ~- 2 units if those within which the ends lie are 
included). The quanti ty P~(N) is evaluated in Appendix B, and may be expressed as 

PI (N)  = [(Pn --  l ) / (Pn  ~-Po0 - -  2)](pn -]-P00 - -  1) N -[- [(P00 - -  1)/(pn q-P00 - -  2)] 
(46) 

The reader  may  satisfy himself concerning the validity o f  Eq. (46) by examining certain 
special cases where the answer is easily arrived at by inspection. Useful points at 
which to make  such a check are ~- = 0, z ~ a, ~- = aN with E = a, ~- = (N -k 1)q 
with E = 0. I t  also turns out  that  as N --~ 0, Eq. (45) reduces automatically to Eq. (44). 

U p o n  substitution o f  Eq. (46) and E = ~- - -  Nq  into Eq. (45), one obtains 

Pz(1 - -  P00) -k P~(1 - -  P l 0  (Pn  -k P00 - -  1) N 
q~N(~') = 2 - -  P n  - -  POO 2 - -  P n  - -  POO 

-k N(1 -- Pn) Pl(Pll q- Poo -- 1) N 

r P I ( 1  - -  P u ) ( P ~  + Poo - -  1) ~r, 
G 

The power spectrum G(co) may be written as 

co 

G(w) = 2 Re f e-i~q~(r) dr 
0 

N = 0, 1, 2 ..... ~ (47) 

= 2 Re q~u(z) e -i~ dr 
0 N a  

(48) 
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As before, the integration may  be carried out, the geometr ic  series summed,  and  the 
final result expressed as 

[ 2P1(1 - p~O(p~ + p o o ) ( 1  - c o s  co,~) 
G(co) = - l _ 2 ( P o o + P n _  1) c o s c o c ~ + ( p n + P o o - -  1) 2 

PI(1 - -  Poo) • 
2 - -  Pl l  - -  Poo 

This curve is illustrated in Fig. 8. I t  is an interesting feature tha t  the fac tor  

(Poo + Pll - -  1) 

can be negative, because Poo and p ~  can lie anywhere between zero and one indepen-  
dently. Under  this circumstance,  it is entirely within the rea lm of  possibility tha t  it 
may  lie very close to - -1 ,  say it is --1 + h, where h is a small  positive number .  Then 

1] 
co2cr2 cr -k 27r3(co) 

(49) 

[1 - -  2 ( P o o  -k P l l  - -  1) cos  coo- @ (Poo @ Pl1 - -  1)21 

= 1 - -  2 ( - - 1  -k  h) c o s  co(r -k (1 - -  2h) 

2(1 - -  h)(1 -k cos  coc~) (50) 

Thus,  as cos cocr--+--1,  the denomina to r  in Eq. (49) becomes small enough to, 
dominate  the 1/co~"cr ~ t e rm and G(co) becomes very large. As a result, we do not  have a 
simple bell-shaped curve in Fig. 8. 

The case where (L00 + P n  - -  1) ~ 1 - -  h is not  as serious, because the n u m e r a t o r  
in Eq. (49) contains a factor  1 - -  cos cocr which also becomes small, i.e., 

[1 - -  2(Poo -r P l l  - -  l )  c o s  coo- -J- (ffoo -~  P l l  - -  1) 2] = 2(1 -}- h)(1 - -  c o s  coa)  (51 )  

G(co) = [Pa(1 - -  Pl~)(P~I -t- Poo)/(1 @ h)](1/co 2cr2) (52) 

The lesson to be learned is o f  course that  G(co) is not  a simple curve, under  the 
circumstances in which are interested. Hence, when making  compar isons  between 
power  spectra, the half-width provides only a semiquantit iat ive indication of  relative 
bandwidth.  This is especially true when one of  the two curves being compared  is 
bell-shaped and the other is not. 

As we let P00--+ P0 and  Pll  ~ P1,  so tha t  the source no longer has memory ,  
Eq. (49) reduces to 

G(co) ----- [2P1(1 - -  P1)(1 - -  cos co~)/co%~2](z -k 27r3(co) P12 (53) 

which is identical with Eq. (17), as it should be. 
Now,  we examine the case in which transmission times are optimized. Analyzing 

Eqs. (31)-(35), together with (36) and (37), we find that  the t~ going with the PiJ 
prescribed by Eq. (42) are 

to1 = tlo ---- or, too = tll = 2or (54) 
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P o w e r  s p e c t r u m  f o r  a f i r s t - o r d e r  M a r k o v i a n  s o u r c e ,  

P l l  = Poo = 0 . 3 8 2 ,  tzl  = too = Go = to1 = l ~ .  

We begin by examining a portion of what might be a typical message having the 
transmission times prescribed in Eq. (54). This is illustrated in Fig. 9. The alert reader 
may have already determined, by inspection, that if a segment of a message exactly M 
units of ~ long follows a unit occupied by all or part of a one, and if M is odd, that 
message can only end with a zero; while if M is even, it must end with a one. This and 
many other constraints interact to render the evaluation of the autocorrelation 
function both detailed and tedious. Nevertheless, it can be evaluated precisely. 
Perhaps the best way to explain the process is to concentrate on a unified group of 
terms in ~(r), show how, in this particular case, the constraints interact and the 
result is formulated, and then merely write down the final result for the complete 
~(r). The reader should then be able, using exactly the same process, to evaluate the 
remaining terms which have not been explained in detail. 

Following this plan, we will derive, in some detail, the contributions to 4(7), 
going with those values of  r expressible as r ~ N~ -k E, or values of ~ bounded in 
the following way: 

N~r <~ r ~< (N + 1)or (55) 
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which of course implies e < a. A little though will show that a ~- of  this magnitude 
can span either N whole units of  cr or alternatively only N -  1 whole units. This 
means that in the first case, -r contacts N + 2 units; the N whole units which it spans 
plus the two units on either side of  these N units within which its end points lie, 
neither of  which is completely spanned by ~-. In the second case, by the same line 
of  reasoning, r will contact N + 1 units, the two end units again being incompletely 
spanned. In order to arrive at the respective probabilities for each case, one can think 
of "throwing down" a straight line of length -r onto a typical message. In what 
fraction of  the total space of the message can one of the end points (which of  course 
determines the location of the entire ~- interval) fall so that N complete units will 
be spanned ? Again, inspection will show this fraction to be 

fN = e/~ (56) 

For  the second case (r spanning N -  1 complete units), the appropriate fraction is 

fN-1 = 1 - - ( e / e )  (57) 

These factors will have to appear in the probabilities which are used to determine the 
contribution to the ensemble average, for ~(~-), coming from the interval ~-. Reference 
to Fig. 10 will be helpful in understanding the process. 

Figure 10(a) treats the case where ~- covers N complete units. The probability 
factor fN,  described by Eq. (56), must therefore be used, and is in fact shown at the 
bot tom of  the diagram in Fig. 10(a). We work out a case where N is odd. There are 
only three possible message situations for this case, and these are exhibited on different 
levels in Fig. 10(a). The unit ~ is shown in the upper left-hand corner. Notice that 
in each of  the three cases, the first visible portion of the message sequence (on the 
left) is all or part  of  a one. Thus, on the first level, it entirely precedes the N units 
under consideration. I t  remains an open question as to whether it is the last part  of  a 

I I t 1 1 1  I 

Fig. 9. 

I-I, I,I III,,II, 

tim~ 

Typical message for a first-order Markovian source after optimization of 
transmission times, tzo = toz = la, tn = too = 2a. 
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(a) 

H T 

(s) 
P1 

f- 

~(s) 

p0(~) o 

(b) 
T 

p~S: PI(N-1) 

odd even 

- N fN-i 

Fig. 10. Terms in autocorrelation function. 

pulse, 2a in length (a one following a one), or all of  a pulse, G in length (a one following 
a zero). The probability PlY) represents the space probability, as opposed to the time 
probability. We work out below the exact form for PLY). Here, however, we note 
that the symbol p~8~ has a different meaning than that given previously during the 
discussion of a source without memory. No confusion should result from this, and 
it avoids the introduction of an even longer list of  symbols than we already have. 

On the second level in Fig. 10(a), the one at the left is in fact a pulse 2~ units 
long, and it invades, to the extent of one a unit, the Na units under consideration. 
The space probability for the second half of such a pulse covering the first of the N 
units is denoted by Ply). We also derive this quantity below. On the third level, the 
first unit on the left is, again, either the second half of  a pulse two units long or a 
single pulse one unit long, and again we use the probability P~8). 

Returning to the first level, since N is odd, the intermediate message N units 
long (which follows a one) can only end (from what has been said above) in a zero. 
The probability of finding just such a message to fill the N units in question is Po(N), a 
function derived in Appendix C. Actually, because we know that the last symbol 
must be a zero when N is odd, it is really unnecessary to append the subscript zero 
in P0(N); and in Appendix C we do in fact drop it. For clarity in the present exposition, 
however, we shall retain it as well as the subscript 1 when the last symbol must be 
a one. On the first level, we show a 0 in the last place to emphasize the fact that the 
message N units long must end in a zero. 

On the second level in Fig. 10(a), it can be seen that we deal with an intermediate 
message exactly N -- 1 units long. In this case, it must end in a one, and we have to 

822/3/3-3 
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use the probability P~(N -- 1). The same is true on the third level, where again we deal 
with an intermediate message N -- 1 units long. 

Since the final symbol within which the trailing end of -r falls must also be a one 
in order for there to be a contribution to the autocorrelation function, we must 
multiply the previously mentioned probabilities by the probability, in each case, 
that the final symbol is indeed a one. On the first level, since we know that the last 
symbol in the intermediate message is a zero, this probability is the conditional 
probability Pol �9 The appropriate pulse is shown. On the second and third levels, the 
appropriate conditional probability is clearly pal,  and it, together with its associated 
pulse, is shown. 

Each configuration contributes a term, unity, to the autocorrelation function, 
each unity weighted by the probability of the configuration. The latter probability 
is determined, clearly, by multiplying f s  = E/e by the three probabilities shown on 
each level. Thus, the first level in Fig. 10(a) makes a contribution (E/G) P~IPo(N ) Po~ �9 
The second level contributes (e/a) P~I~IP~(N -- 1) pl~, while the third level contributes 
(e/G) P( I* 'PI (N - -  1) P11. 

The contribution coming from r includes the situations shown in Fig. 10(b). 
Here, of course, N -- 1 is even; and furthermore, thefprobabi l i ty  factor is 1 -- (e/a), 
as indicated at the bottom of the diagram. The reader can easily work out the con- 
tributions from Fig. 10(b) in a manner entirely similar to that used in connection with 
Fig. 10(a). 

In order to see that no other configurations can contribute to either Fig. 10(a) or 
10(b), the reader should try those which he may have in mind, applying all the requisite 
constraints. Thus, suppose one wished to have a situation such as in the first level 
of Fig. 10(a), but in which the last factor was p ~ .  This would require that the last 
symbol in the intermediate message be a one, an impossibility when N is odd. 

We now turn to the evaluation of P ~  and PI[ I. Assume that the total message 
consists of W symbols. The message space occupied by ones following a one, zeros 
following a zero, ones following a zero, and zeros following a one, is 2crWP~p~, 
2GwP0P00, GWPoPol, and eWPlPlo, respectively. These, added together, correspond 
of  course to the total space. Now, consider only the portion of message space occupied 
by ones following one. As indicated above, this is 2eWP~PI~. Only half of  this space, 
however, corresponds to the second half of a pulse of length 2e, associated with a one 
following a one. Thus, the space probability of the second half of such a pulse is 
obtained by dividing 2e WP~pn by the four quantities listed above (the total space of 
the message) and dividing the whole by 2. Similarly, the space probability of a pulse 
representing a one following a zero (of length e) is obtained by dividing GWPoPoz 
by the sum of the four quantities, pl~l is the sum of these two probabilities, and we 
obtain 

p~l = (PlP~I + PoPo~)/(2P~PI~ -k 2PoPoo + PoPo~ -k PIP~o) (58) 

which can of course be modified and re-expressed through use of Eqs. (36) and (37). 
Since 

PIP11 + PoPol = P1 (59) 
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a given one is either part of a 11 diagraph or not. Using Eq. (59), we may rewrite 
Eq. (58) as 

PI~ = P~/(2PIp~a 4- 2PoPoo 4- PoPo~ -~ P~P~o) (60) 

Now, the probability Ply) is clearly the quantity obtained by dropping the term PoPo~ 
in the numerator of Eq. (58). We see through comparison of Eq. (60) with that result 
that 

P~) = P~)p~ (61) 

which will prove to be a useful shorthand. In fact, using this formula, together with 
the expressions already derived for the contributions coming from Figs. 10(a) and 
10(b), we are able to write, for that portion of q~(z), 

[q~(~')]oaa = (e/a){P(N)poa + P ( N -  1)p~ + P ( N -  1)p~z} p~s) 

-5 [1 -- (e/a)]{P(N -- 1)pll 4- P ( N  -- 2)p~Po~ + P ( N  -- 3)p~1} P~), 

N = 3 , 5 , 7 , . . . ,  ~ ' = N a + e  (62) 

Similarly, when z has such a value that N is even, we may construct, by an entirely 
analogous detailed process, the contribution 

[q~(z)]even • (e /~){P(N)p~ -4- P ( N  -- 1)PolP~I 4- P ( N  -- 2)p~l} P~) 

+ [1 -- (E/a)]{P(N -- 1)po~ + P ( N  -- 2)p1~ + P ( N  -- 2)p~} P(~), 

N =  2 ,4 ,6  ..... ~-= N a + e  (63) 

In these equations, we have dropped the subscripts 0 and 1 (used in connection with 
Fig. 10) in the symbol P ( N )  since there is a mutual exclusion with the oddness or 
evenness of N. Furthermore, it will be noticed that the cases N = 0, 1 are not included 
because P ( N )  are not defined for negative values for N. These have to be treated 
specially and can be worked out using the same general principles, enumerating and 
examining the finite number of messages which can be fitted into the short intervals 
involved. P ( N )  is calculated in detail in Appendix C, with the result 

P(N) = [1/2(1 - -  P11Poo)l{(1 --/~ P1/2(Pl/2pll/2)N[(Pl~2 - -  Pl 1/2) @ ( - -  1)N(p010/2 @ P~/2)1 

+ (2 --  P00 --  P11) + (Plz - -  P00)(-- 1) N} (64) 

In anticipation of the fact that i t  will later be necessary to perform a summation 
of an infinite series, we introduce transformations in Eqs. (62) and (63) which allow 
these summations to be performed with greater convenience. Thus, we define in 
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Eq. (62) n = � 8 9  3) and in Eq. (63) n = � 8 9  2). Using these transformations, 
together with Eq. (64), we convert (62) and (63) into 

and 

(~even = [ "p~s,(1 --/000)(3 @ 3])21 --  41011)] 
1 -- PllPoo 

_ (])11poo)~+ 1 [(1 - ] ) . )poop~)( -3] ) l , /poo-  3 + 4])11)] 
1 - -  PllPoo 

_[ (~___ 2n)[. ( 1 -  PxO(ll--_Poo)(])n--pnPoo 1) P~s) -] 

7 "  --  ])11)] 
1 - -  ] ) o o P n  

~o~ = [(1 - poo) e~ ~, 
1 --PlzPoo (81o11 -- 3p~ -- 3)] -- (PllPoo) ~+1 

• [(1 --])lOPooP~ ~, (3])11Poo + 3p~1- 8])11)] 
1 - -  ] ) z l ] ) o o  

T 

7- - -  1 - -  ] ) z l P o o  

--  ( ~  __ 21/i ) (])llflOO)n+l [ (2 / )11--  ])ilPoo1--__P::t)])11])00/)00(1 --  /011) p~s, .] 

(65) 

(66) 

The cases for N = 0 and N = 1 give the following contributions: 

= --  ~ol @ 1 --  _L _ ~  @ r-o lPn ~_ 

_ riG) 
( P~'  -(~,. p i l r n  ) (67) = p~) + "r(~ _ p~) + ~ + / % 1 v n  + - - - - 2  , 0 ~ "r ~ (y 

and 

(s  - -  �9 g p ( s )  ~ , ( s ) ~  p:s) ~: ;  _(s)n ( I ~ )_~_  20 - k 11 -~-])11f11] ~1 - [plopol + pl~ + p~ll + r o ~ , ~ l  - 

T 
: --  (PloPol @ Pl l  @ P121) --liO(s) __ pn~ro1O(s) P~.) . 

o- 2 2 

_k_ [--(PloPo1 "@ /711 "-~ ])21) P~s) _t_ 2p2~11  _~_ ply) _L P~)])11], ff ~ 7" ~.~ ft. 
(68) 

Again, it can be verified that ~0(~) = (/,1(o), q~l(2(r) = q~(N = 2, E = 0), 

4 ( N ,  c = ~) = 4 ( N  + 1, E = 0). 

Using the portions of the autocorrelation function derived in this way for the 
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var ious  integrals  

G(0)) ~-- 2 Re  

= 2 R e  

+ ~' ((N~+l'~d?'(N'~-) e-i~247 i 
N=2,4,6. . .  * N=3,5,7. . .  

- - - - 2 R e  [ f :  r  -i~" d r  + f :~  r  -i~ dr]  

~=o ~ , ( ' ,  *)e-i '~ dr 4- j(zn+3,~ q~~ ~-) e-i'~ dr] (69) 

o r  

of  % we m a y  write the Four i e r  t r ans fo rm,  or  the p o w e r  spec t rum,  

co 

f r  e - i ~  d r  
0 

[ f :  r -i~" d r  + f f f  r  - i ~  d r  

f(yN+~)~ r "c) e -~~ dr] 

G(0)) = G1 4- G2 4- G8 4- G~ (70) 

where  we have  subdivided G(0)) into fou r  parts .  F o r  Gz and  G4, the in tegra ted  results 
will have  to be s u m m e d  as a geometr ic  series. The final results are lengthy bu t  s traight  
fo rward .  They  are summar i zed  in the fo l lowing equations4:  

Gl(w) -- 2(A~ + B~) sin co0. + 2B----2-~ (cos co0. - -  1) 
09 0)20 . 

G2(0)) - -  2D~ sin 0)0. [2 cos 0)0. - -  1] 
0) 

4- 2C----2-~ [cos 20)0. - -  cos 0)0. -k 20)0. sin 20)0. - -  090. sin 0)0.] 
0)20. 

G3(0)) = Ae [ s i n  30)0. - -  sin 2090. - -  sin 0)0. ] 
% -  " ~ - -  c ~ J  - 

2BEpooPll [ sin 30)0. - -  sin 20)0. - -  P~lPoo sin 0)0. .] 
0) 1 - -  2pllP0o cos 20)0. + (pllPoo) 2 

c~ 
Jr- 0.0)2 

• {(30)0. sin 30)0. + cos 30)0. - -  2090. sin 20)0. - -  cos 20)0. 

- -  30)0. sin 0)0. - -  cos 0)0. + 1) 

--" (1 - -  cos 20)0.)} 

2DePooPu 
0320. 

• {(30)0. sin 30)0. § cos 0)0. - -  20)0. sin 20)0. - -  cos 20)0. - -  30)0.PnPoo sin 0)~ 

- -  P11Poo cos 0)0. 4- P11P0o) 

~ [1 + (palPoo) 2 -- 2pnpo  0 cos 20)0.]} (71) 

Note that here we did not include the contributions due to delta functions at coa = 0. 
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Ao [ sin 4co0. - -  sin 3co0. - -  sin 2(o0. + sin co0. ] 
G4(o)) - -  L' 1 ~o 1 - -  cos 2w0. 

2BoPo_oPu [ sin 4w0. - -  sin 3oJ0. - -  PllPoo sin 2co0. + PnPoo sin ~o0. _] 
co [ 1 ---- 2pnPo0 cos 2co0. + (p,lPoo) 2 J 

Co 
- ~  0320. 

• [(4(o0. sin 40)0. + cos 40)0. - -  30)0. sin 3co0. - -  cos 30)0. 

- -  4co0. sin 2~o0. - -  cos 0)0. + 3co0. sin co0. + cos too.) 

--" (1 - -  cos 2(00.)] 

2p**PooDo 
( ~ 0 2 0  " 

• {(4co0. sin 4(00. + cos 4090. - -  3o~0. sin 3090. - -  cos 3090. - -  4co0.pnp0 o s in 2oJ0. 

- -  PnPoo cos 2090. + 3pllPoo(O0. sin 090. -F P11Poo cos oJ0.) 

~" [1 + ( p n P o o )  2 - -  2 p . l l P o  o COS 2co0.]} ( 7 1 )  

Ao  z 

B o = 

C 0 =  

D o =  

A e =  

BE= 
Ce= 

D e = 

A z 

B z ~- 

c~= 

P~S)(1 - -  Poo)(Spn - -  3 - -  3p~z)/(1 - -  PnPoo) 

P~S)( 1 - -  Pn)Poo(3p~l - -  8 p n  + 3pnPoo)/(1 - -  PnPoo) 

P~')(1 - -  p**)2(1 - -  Poo)/(1 - -  P11Poo) 

P~')(1 - -  P n ) P o o ( 2 p n  - -  PnPoo - -  p~O/(1 - -  PnPoo) 

P~*)(1 --Poo)(3 - -  4pl l  + 3p12~)/(1 --P11Poo) 

P~)Poo(1 - -  p n ) ( 4 P n  - -  3 - -  3pn/Poo)/(1 - -  PnPoo) 

-Co 

P~)Poo(1 - -  pn ) (1  - -  2p~, + pn/Poo)/(1 - -  P,lPoo) 

p~s) 

! p ( s )  n(S) 1 n(8)',, (--P~) + 2-11 + polrol + ~Pllrll  j 

(P~oPm + P n  + P~I) p~s) 0(,) !p(,)  x .  p(,) - - P * * s  - -  2--11 - -  2/Jl1--11 

. ,~(,> pl(;) 

2P**/(2Pn + 2Poo + Pol + Plo), 

(72) 

P~)  = Po l / (2Pn  @ 2Poo @ Pol ~- Plo) 

F igure  11 is a p lo t  o f  the p o wer  spec t rum accord ing  to  Eq. (71). The  values  o f  
the  va r ious  p robab i l i t i e s  are ei ther  given by  Eq. (42) or  can  be ca lcu la ted  by  Eqs.  

(36)-(41). A c o m p a r i s o n  o f  Figs.  8 a n d  11 shows tha t  n o t  on ly  has  the  b a n d w i d t h  been  

reduced,  b u t  also the curve  once  aga in  has  a s imple bell  shape.  In so fa r  as the ha l f -wid th  
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Fig .  11. P o w e r  s p e c t r u m  fo r  a f i r s t -o rder  M a r k o v i a n  s o u r c e  a f t e r  o p t i m i z a t i o n  

o f  t r a n s m i s s i o n  t imes ,  P l l  = Poo = 0.382, tzo = toz = 1% tzz = too = 2~ .  

can be used as an index of  overall breadth, it has gone f rom co~ = 3.88 to c~c~ = 0.96. 
At the same time, the average time of transmission per symbol 

( t )  = [2Poo + 2Pa~ + P0~ + P~0] e 

has only increased by a factor of  1.382. This leaves us with a factor 

(3.88)(1)/(0.96)(1.382) = 2.92 

which can be used to increase the speed of transmission (reduce average transmission 
time by using a smaller ~) without increasing the bandwidth. Thus, we can transmit 
almost three times as fast without paying for it with increased bandwidth. In the case 
of  the first-order source with memory, therefore, optimization of transmission times 
using the statistical thermodynamic formalism is very worthwhile. 

5. C O N C L U D I N G  REMARKS 

From the foregoing, it appears as though optimization of word transmission 
times (compact coding) by use of  the statistical thermodynamic formalism does not 
always lead to a simultaneous reduction of message transmission time and bandwidth. 
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(For a given scale, it does, of course, always lead to reduction of transmission time.) 
On the other hand, the two cases we examined were distinguished by having source 
without and with memory, respectively. It may very well be that optimization of  
transmission times for sources with memory will always allow some narrowing of 
bandwidth along with a reduction of transmission time, provided that the correlation 
between symbols in such that it is more likely for ones to follow ones and zeros to 
follow zeros. In this case, the signal will contain long sequences in which the pulse 
height remains unchanged. These sequences might be compressed and expanded, 
relatively, in such a way that total time of transmission is reduced without incurring 
bandwidth penalties. 

Since it should be clear (from the difficulties which we have encountered in 
deriving analytic expressions for autocorrelation functions and power spectra in 
relatively simple cases) that the evaluation of these functions for the most general 
case may be impractical, it would be useful to have a general theorem which tells us, 
in the absence of noise, under which circumstances both bandwidth and transmission 
time can be reduced simultaneously. We shall reserve the consideration of this question 
for a later investigation. 

In any event, we have been able to show, in certain instances, that the statistical 
thermodynamic formalism does allow improvement of both bandwidth and trans- 
mission time, and have developed techniques for exploring the autocorrelation 
functions and power spectra in relevant situations in order to ascertain whether or 
not such improvement are possible. 

A P P E N D I X  A.  S O U R C E  W I T H O U T  M E M O R Y  W I T H  t 0 - 2 a ,  t 1 = o  

Let Po be the probability of source emitting a zero, P1 the probability of source 
emitting a one, and P(N)  the probability of a message exactly N units of ~ long. We 
can write a recursion formula for P(N) ,  

P(N)  = P ( N  -- 2) eo + P ( N  --  1) P1 (A1) 

This difference equation has a solution of the following form(a2): 

P(N)  -- a lX  N + a2 (A2) 

Substitution of (A2) into (A1) yields 

alX N @ a2 = alPo XN-2 -~- alP1 XN-1 @ a2 

1 = PoX -~ -t- P1X -1 (A3) 

Since P0 + P~ = 1, Eq. (A3) has the following solutions for X: 

We can discard X = 1 
Thus, we write 

X =  1, P I - - 1  (A4) 

since we expect P(N)  to be a function of both N and Px �9 

P(N)  = al(P1 -- 1) N -1- a2 (A5) 
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Now,  we use the bounda ry  conditions to determine al and  a2. For  P(1), the only 
whole message that  can fitted into a unit  ~ is a one, since a zero requires two units 
o f  G. Thus,  5 

P(1) = P1 (A6) 

Fo r  P(2), where two units o f  ~ are available, it is possible to have either a zero or 
two one's.  Thus,  

P(2) = p 2  4- P0 (A7) 

Combining  (A5) with (A6) and (A7), we get the desired result, 

P(N)  = [ ( P 1 -  1) u + l -  1 ] / ( P ~ -  2) (A8) 

Notice that  P(0) = 1, P(oe) = 1/(2 - -  P0 .  
A simple test o f  (A8) with N = 3 yields 

P(3) = P1 ~ 4- Po 4- Po 4- P1 = [(Pa - -  1) 4 - -  1]/(P1 - -  2) 

which is satisfactory. 

A P P E N D I X  B. S O U R C E  W I T H  M E H O R Y  B U T  W I T H  

tOO ~ t l l  ~--- t l 0  - -  t01 - - -  O 

Let p~N) denote the probabi l i ty  of  having exactly a whole number  of  messages 
in N a  with the last symbol  i, zero, or one. Also, let p~j be the condit ional  probabi l i ty  
o f j  following i; again, i, j can be one or zero. We can now write two coupled recursion 
formulas:  

PI(N) = P I ( N -  1)Pll  @ P o ( N -  1)pro (B1) 

Po(N) -- P I ( N -  1)Plo 4- P o ( U -  1)P00 (B2) 

In  order to decouple PI(N) f rom Po(N), Eq. (B1) is rearranged to give 

Po(X) = (1/t)oO[p~N+I) __ p11p~U)] (B3) 

Substituting Eq. (B3) into (B2), we have 

p~N+I) _ pl(N)(pl  I 4-P00) - -  P~N-1)(PloPol --PzlPoo) = 0 (B4) 

Now,  the solution PI(N) has the fo rm 

P g N )  = AA1 x + BA2 ~ (B5) 

where 21 and  A 2 are two independent  parameters .  For  simplicity, substitute P(N) = A N 
into Eq. (B4): 

A N + I  - -  AN(P11 4- 13oo) - -  Aw-I(PloPol --Pl~Poo) = 0 

Such a choice also makes the correlation function continuous at t = a. 
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,~2 _ ) t ( p n  _}_ Poo) - -  (PloPo~ - -P l lPOO)  = 0 

But, f rom Eq. (39), 

Plo = 1 - -  P l l ,  Pol = 1 - -  Poo, PloPol --PlaPoo = 1 - -  Pn  --Poo 

Equa t ion  (B6) can be rewrit ten as 

)t2 - -  ~ ( P a l  @ Poo) @ ( P a l  @ Poo - -  1) = 0 

having roots  

; ~ = P o o @ P n - -  1, 1 

Thus,  

(B6) 

(B7) 

(Bs) 

A P P E N D I X  C.  S O U R C E  W I T H  M E M O R Y  A N D  T R A N S M I S S I O N  
T I M E S  O P T I M I Z E D  T O  too = tl l  = 2G, tlo = to1 = o 

Here, we shall use the same no ta t ion  as in Append ix  B. As before,  we can write 

P I (N)  = P ~ ( N -  2 ) p  n -}- P o ( N -  1)Pol (C1) 

Po(N) = P I ( N -  1)Pao + Po( N - -  2)Poo (C2) 

P~(N) = [(pla - -  1)/(paa @ Poo - -  2)](pal + Poo - -  1) N @ [(Poo - -  1)/(Pn @ Poo - -  2)] 

(m4) 
Po(N) can be calcula ted in the same way. But we know that  Po(N) + PI (N)  = 1; 
therefore,  we have, immediate ly ,  

Po(N) = [(1 - -P~I) / (Pzl  + Poo - -  2)](paa + Poo - -  1) u + [(Pn - -  1) / (p~ -~ Poo - -  2)]] 

(B15) 

PI(N)  = A(Poo + P n  - -  1) N -~ B (B9) 

In  the de te rmina t ion  o f  A and  B, the p roper  b o u n d a r y  condi t ions  are 

PI(1) = P n  (B10) 

Pt(2) = p~a + PloPoz (B1 l )  

Not ice  t h a t / 1 ( 1 )  is Pl l  ra ther  than  P n  q- Pol �9 This in t roduces  the requi rement  tha t  
these N units are preceded by  a one and  tha t  they must  end in one. The same is true 

for/~ ) . 
Combin ing  Eqs. (B10), ( B l l ) ,  and  (B9), we have 

A = ( P l l  - -  1 ) / ( P l l  @ Poo - -  2) (B12) 

B = (Poo - -  1) /(pl l  + Poo - -  2) (B13) 

o r  
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To decouple Po(N) and PI(N), we rewrite Eq. (C2) to give 

PI(N -- 1) = (1/Plo)[Po(U) -- Po(X -- 2) Poo] 

Now, substitute Eq. (C3) into (C1); after simplification, we have 

(c3) 

Po(N @ 1) -- P o ( N -  1)(1 -k PooP~O -k P o ( N -  3)(p~lPoo) = 0 (C4) 

Notice that if Po(N) had been represented in terms of P~(N) and substituted into 
Eq. (C2), we would have obtained 

PI(N-[- 1) -- P ~ ( N -  1)(1 + PooPaa) -~- P ~ ( N -  3)(PnPoo) = 0 (C5) 

From Eqs. (C4) and (C5), it is observed that Po(N) and Pa(N) satisfy the same equation. 
To simplify matters, define 

P(N) = PI(N) + Po(U) (C6) 

Then, by combining Eqs. (C4) and (C5), we have 

P(N-t- 1) -- P ( N -  1)(1 @ PooP~) @ P ( N -  3)(pz~P00) ----- 0 (C7) 

Now, the particular solution P(N) = A N is substituted into Eq. (C7): 

~u+l - -  A N - l ( 1  _[_ P00Pzl) --~- AN+3(Pz~Po0) =- 0 (C8) 

Dividing through Eq. (C8) by ~t N-3 gives 

A~ -- A2( 1 + PooPlO + P~aPoo = 0 

Clearly, 

and 

(C9) 

A 2 =  1, PlaPoo (C10) 

,)t ~= :J:l, ~(pl~Poo) 1/~ (Cl l )  

The general solution is 

P(N) = A~(p~Poo) N/z -~ A~(--pnPoo) 'v/2 @ Az + A~(--1) N (C12) 

There are four constants in Eq. (C12) to be determined by four boundary conditions. 
First, note that when P(N) was used in Eqs. (62) and (63), it was always implied that 
one preceded this train of N units of a. Therefore, when only one o- unit is involved, 
the only message which fits is a zero. Thus 

P 0 )  = P~0 = Po(1), e l 0 )  = 0 (C13) 

there is no way to fit a one following a one into a unit of length a. 
For P(2), either a one or a zero followed by a one can be fitted. This gives 

P(2) = Pll + PloPol = P1(2), Po(2) = 0 (C14) 
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Similarly,  

P(3) = PllPlo @ PloPol~lO @- PzoPoo = Po(3), Pl(3) = 0 ( e l 5 )  

P(4) = PioPolPioPoi @ PloPmPli 4- P~oPooPoi -~ fillP11 -}- P~xP~oPol = P~(4), P0(4) = 0 

(C16) 

Equa t ions  (C12)-(C16) enable us to write 

Ai  = [(1 - -  p~z)/2(1 - -  P11Poo)][Poo - -  (P~Poo) ~/2] 

A2 = [(1 - -  P11)/2(1 - -  Pl~Poo)][Poo 4- (pllPoo) ~/2] (C17) 

A~ = ( p ~  --  Poo)/2(1 - -  P~Poo), A4 = (Pn  Poo)/2(1 - -  PzlPoo) 

Subst i tu t ion o f  Eq. (C17) into (C12) yields 

1 -- Pii 

P(N)  = 2(1 - -p~Voo) [Poo - -  (PooP~l)l/2l(PooP~) N/2 

1 - -  pl~ [Poo 4- (PooPi~)~/~][ - (P~iPoo) N/2] 
4- 2(1 - -  PlxPoo) 

4- 2 - -  plx - -  Poo 4- P l l - - P o o  ( _ I ) N  
2(1 - -  Pi~Poo) 2(1 - -  P~Poo) 

1 
- -  2(1 - -  PxxPoo) ((1 - -  pi~)(p~Poo)N/~{Poo --  (PooP~z) ~/2 

4- (--1)N[Poo 4- (PooPll)X/2]} 4- (2 - - P x i  --POO) 4- (P l l  - -Poo) ( - -1)  N) (C18) 

F o r  even N, or  N = 2n, Eq. (C18) becomes 

p(2n) = [1/(l - -  pllPoo)]{1 - -  (PooPxl) n+~ --  Poo[1 - -  (PooPll)qz]} (C19) 

F o r  odd  N, or N = 2n 4- 1, Eq. (C18) becomes 

p(2~+~) = [(1 - -  p ~ ) / ( l  - -  p~lPoo)][1 - -  (p~,Poo) ~+~] 

Not ice  tha t  we have d r o p p e d  the subscripts  1 and  0 in connect ion  with P(N) .  
This is because  o f  the mutua l  exclusiveness with respect  to  odd  and  even N. This 
mutua l  exclusiveness (subscript  1 going with odd  N and  subscr ipt  0 with even N)  
can be p roved  th rough  appl ica t ion  o f  the recursion formulas  (C1) and (C2) together  

with (C15) and (C16). 
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